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This paper presents dynamic response of rigid foundations of arbitrary shape embedded in a multi-layered
poroelastic medium subjected to time-harmonic vertical loading. The contact surface between foundation and
poroelastic medium is smooth, and either permeable or impermeable. This dynamic interaction problem is in-
vestigated by employing a discretization technique and an exact stiffness matrix scheme. Selected numerical
results are shown to portray the influence of various parameters such as foundation shape, embedded depth, and
poroelastic effects on vertical compliances of various rigid foundations in multi-layered poroelastic media. In

addition, vertical vibrations of mudmat foundations on water-saturated layered soils are also presented.

1. Introduction

The study of dynamic interaction between foundation and sup-
porting soil medium is of considerable interest in geotechnical en-
gineering and earthquake engineering since its results are very useful in
the analysis and design of foundations subjected to dynamic loading
(e.g., vibrating machines, high-speed railway, subway, blast load, etc.).
In the past, the classical problems of dynamic interaction between rigid
foundations and a homogeneous elastic medium were studied by many
researchers who employed a variety of analytical and numerical tech-
niques. Examples of past studies include strip foundations [1,2]; cir-
cular foundations [3-5]; rectangular foundations [6,7]; and founda-
tions of arbitrary-shaped [8-10]. Those existing studies, however,
considered the supporting soil medium as a single-phase elastic solid.
Geomaterial is often a two-phase material consisting of an elastic solid
with voids filled with water, known as a poroelastic material, which is
considered to be more realistic representation of natural soils and rocks
than the single-phase elastic solid. The theory of wave propagations in a
poroelastic material was presented by Biot [11,12] by adding the in-
ertia terms to his three-dimensional consolidation theory [13]. For the
past thirty years, Biot's poroelastodynamics theory has widely em-
ployed by many researchers to study various soil-structure interaction
problems involving homogeneous poroelastic media and various foun-
dations including strip [14,15] and circular [16-19] foundations. In
addition, vertical vibrations of a rigid rectangular foundation resting on
a homogeneous poroelastic half-space were also presented by Halpern
and Christiano [20].

It is well known that natural soil profiles are normally layered in
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character. Studies related to dynamic interaction between vertically
loaded foundations and a multi-layered poroelastic medium are very
limited when compared to the case of layered elastic media (e.g.,
[21-28]). Philippacopoulos [29] investigated vertical vibrations of a
rigid circular foundation resting on a layered poroelastic half-space.
Dynamic response of a rigid strip bonded to a multi-layered poroelastic
medium was considered by Senjuntichai and Rajapakse [30], who
employed the discretization technique and an exact stiffness matrix
method [31]. In the exact stiffness matrix scheme, stiffness matrices of
all layers and underlying half-space are derived explicitly from the
general solutions presented in their previous paper [32]. The global
equation is then obtained from the continuity of displacements and
traction at all layer interfaces. Subsequently, dynamic interaction be-
tween multiple strips and a multi-layered poroelastic half-plane was
also studied by Senjuntichai and Kaewjuea [33]. In addition, Senjun-
tichai and Sapsathiarn [34] presented vertical vibrations of an elastic
circular plate embedded in a multi-layered poroelastic medium by
employing the exact stiffness matrices derived for axisymmetric de-
formations. In practical situations, foundations are constructed in var-
ious shapes, such as circular, triangular, and most of all, rectangular.
For certain applications, such as mudmat foundations for offshore
structures, the footings are typically constructed with openings. A re-
view of literature indicates that existing studies related to dynamic
interaction between rigid foundations and multi-layered poroelastic
media have been limited to plane strain and axisymmetric deforma-
tions.

This paper presents vertical vibrations of an arbitrary-shaped
foundation of width 2H embedded at a depth h in a multi-layered
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Fig. 1. Rigid foundation in a multi-layered poroelastic half-space.

poroelastic half-space as shown in Fig. 1. The foundation is assumed to
be rigid and massless, and undergoing time-harmonic vertical dis-
placement. Each layer of the multi-layered half-space is governed by
Biot’s theory of poroelastodynamics. The contact surface between the
foundation and the layered medium is assumed to be smooth and can be
either fully permeable or impermeable. The discretization technique
[8] is adopted in order to solve this interaction problem. Based on this
technique, the contact area under the foundation is divided into a
number of square elements, over which the contact traction is assumed
to be constant within each element. The unknown contact traction and
fluid pressure (in the case of impermeable foundation) within each
discretized element are then solved from the flexibility equations based
on the influence functions, which are the fundamental solutions of a
multi-layered poroelastic half-space subjected to vertical loading and
fluid pressure. Those influence functions are determined by employing
the exact stiffness matrix method. A computer program based on the
proposed scheme has been developed, and comparisons with existing
solutions of rigid foundations on elastic and poroelastic media are
shown to verify its accuracy. Selected numerical results are presented to
investigate the influence of various parameters on vertical compliances
of rigid foundations in a multi-layered poroelastic medium. In addition,
the application of the present solution scheme to investigate vertical
vibrations of mudmat foundations is also demonstrated.

2. Basic equations

Consider a poroelastic half-space with a Cartesian coordinate system
(x,y,z) defined such that the z-axis is perpendicular to the free surface as
shown in Fig. 1. Let u;(x,y,z,t) and w;(x,y,z,t) denote the average dis-
placement of the solid matrix and the fluid displacement relative to the
solid matrix in the i-direction (i = x,y,z), respectively. The constitutive
relation of a homogeneous poroelastic material can be expressed ac-
cording to Biot’s theory of poroelasticity [13] by using the standard
indicial notation as

gj = ZﬂEij + Aél-jskk—occ?ijp, lJ = X,)% (la)

p = —aMey + M¢ (1b)

In the above equations, g is the total stress component of the bulk
material; g; is the strain component of the solid matrix, which is related
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to the displacement u; as in ideal elasticity; u and 1 are Lame' constants
of the bulk material; §; is the Kronecker delta; p is the excess pore fluid
pressure (suction is considered negative); and ¢ is the variation of fluid
content per unit reference volume, defined as { = —wj;. In addition, «
and M are Biot's parameters accounting for compressibility of the two-
phased material.

The equations of motions in the absence of body forces (solid and
fluid) and a fluid source can be written in terms of u; and w; as [35]

Muji + 1+ a*M + ,u)ujﬁ + CIMVV”‘,‘ pii; + hWz (2a)

ocMuj‘,«i + M]/l)j‘ﬁ pful + mw; + bw; (2b)
where p and p; are the mass densities of the bulk material and the pore
fluid, respectively; m is a density-like parameter that depends on o5 and
the geometry of the pores; and b is a parameter accounting for the in-
ternal friction due to the relative motion between the solid matrix and
the pore fluid. In addition, the superscript dot denotes the derivative
with respect to time. In the present study, the motion under con-
sideration is assumed to be time-harmonic with the factor of e, where
® is the frequency of motion and i = +/—1. The term ¢/’ is henceforth
suppressed from all expressions for brevity.

Eq. (2) can be solved by using Helmholtz representation for a dis-
placement vector field and applying the double Fourier integral trans-
form with respect to the horizontal coordinates. The double Fourier
integral transforms with respect to the two horizontal coordinates x and
y can be expressed as [36]

Fleky2) = [ [ f(eyzyetoiovdxdy 3a)

in which k, and k, denote the wave numbers associated with the x and y
coordinates, respectively. The inverse relationship is given by

1

m /:: j::f(kx,ky,z)e‘kxxﬂkyydkxdky

fyz) = (3b)

It can be shown that the general solutions can be expressed in the
frequency-wave number domain in the following matrix form:

v(kyky,z) = R(ky,ky,z)c(ky,ky) (4a)
f(ky,kyz) = S(ky.ky,z)c(kyky) (4b)
where

v(kykyz) = [ty ity @, p1° (5a)
f(kyky,2) = [iG 10y T We]” (5b)
c(kyky,) =[ABCDEF GH]" (5¢)

and A;(ky.k,) to H;(kyk,) are the arbitrary functions that can be de-
termined by employing appropriate boundary and continuity condi-
tions. The matrices R and S are given explicitly in the Appendix A.

3. Influence functions and exact stiffness matrix method

The analysis of dynamic interaction problem shown in Fig. 1 by
using the proposed discretization technique requires a set of displace-
ment influence functions of a multi-layered poroelastic half-space under
vertical loading and fluid pressure applied over a square area. An exact
stiffness matrix method is employed to determine the required influ-
ence functions. A brief outline of the stiffness matrix scheme is pre-
sented here, and more details on the exact stiffness matrix scheme are
given elsewhere [31,34,37].

Consider a multilayered half-space consisting of N poroelastic layers
overlying a poroelastic half-space with layers and interfaces being
numbered as shown in Fig. 1. For an nth layer (n =1, 2,3, ..., N), the
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