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A B S T R A C T

Of late, various constitutive models have been proposed in the literature for the purpose of capturing the various
complex physical mechanisms governing the creep behavior of soft soil. However, the more complex the model,
the greater the number of associated uncertain parameters it has, and the less robustness it is. In this study, the
Bayesian model class selection approach is applied to select the most plausible/suitable model describing the
creep behavior of soft soil using laboratory measurements. In total, one elastic plastic (EP) model and eight
elastic viscoplastic (EVP) models are investigated. To assess the performance of the different models in the
prediction of creep behavior of soft soils, Bayesian model class selection is respectively performed using the
oedometer test data from the intact samples of Vanttila clay and reconstituted samples of Hong Kong Marine
Clay collected from the literature. All unknown model parameters are identified simultaneously by adopting the
transitional Markov Chain Monte Carlo (TMCMC) method, and their uncertainty is quantified through the ob-
tained posterior probability density functions (PDFs). The result shows that the proposed method is an excellent
candidate for identifying the most plausible model and its associated parameters for different kinds of soft soils.
The approach also provides uncertainty evaluation of the model prediction based on the given data.

1. Introduction

Over the past few decades, researchers have conducted numerous
laboratory studies to investigate the time-dependent stress-strain be-
havior for soft soils [1–9]. To describe the viscous features of soft soils,
the strain rates were used in the models [5,10–12]. Based on laboratory
observations, mathematical models have been proposed to consider the
creep behavior of soft soil under one-dimensional (1-D) straining
[1,5,10,13–17] triaxial stress states, and general stress states [18–21].
Advanced elastic viscoplastic (EVP) models have also been developed to
incorporate the anisotropy and destructuration effects [22,23]. Due to
different physical, chemical and biological processes over time, soils
from different places can perform very differently under loading. The
main physical mechanism controlling the creep behaviors may be very
different for different soft soils. It is a difficult decision for engineers or
researchers to select the most suitable model in the analysis of creep
behavior for a certain soil.

When analyzing the creep behavior of soft soil using an EVP model,
the associated model parameters should be determined in advance.
Traditionally, curve-fitting techniques are commonly adopted for se-
parate parts of the experimental data to determine the model

parameters [13,24,25]. Yin and Graham [13] used such a technique to
delineate the model parameters, which were separated based on the
experimental data at different consolidation stages. The studies by Yin
[24] and Yin et al. [25] suggested that the reference equivalent time (t0)
can be approximately calculated by referring to the time at which the
excess pore water pressure has dissipated completely, while the other
two parameters, i.e., creep coefficient and creep strain limit, are ob-
tained by fitting the measured data after the primary consolidation
stage. However, this procedure actually violates the mathematical
theory. The measured total strain includes the elastic and viscoplastic
strain, although the elastic and plastic parameters are determined using
the data on total strain. On the other hand, certain parameters are
determined subjectively, such as reference equivalent time (t0). To
overcome the limitation of the traditional curve-fitting technique, Le
et al. [26] adopted the trust-region reflective least square method to
simultaneously obtain all model parameters based on the test data
under different loading, while the time parameter t0 was assumed to be
the unit minute. The recent studies [27,28] also used said optimization
method to conduct the analysis with the same assumption on the time
parameter. Additionally, certain researchers [29–31] used the en-
hanced genetic algorithm to identify the model parameters, and Jin
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et al. [29] even conducted selection work on the sand models. In order
to get the most reliable simulations during mechanized tunneling,
Hölter et al. [32] adopted the optimal measurement design method to
determine the optimal positions of getting measured settlements, and
conducted the model parameter identification using the least-square-
based method based on the corresponding measured data.

It should be mentioned that all these authors adopted the determi-
nistic method to determine the model parameters. The best fitting be-
tween the predictions and the observations is the only concern in said
determination. This method ignores the uncertainties associated with
statistical uncertainty, measurement error, and model uncertainty and
its effect on the model predictions. Recently, the probabilistic methods
for back analysis have been widely conducted in geotechnical en-
gineering, e.g. maximum likelihood method and Bayesian probabilistic
method [33]. The Bayesian probabilistic method is considered to be
more effective for updating the soil parameters [34–37], and it can
quantify the uncertainty of soil parameters by the obtained posterior
probabilistic distributions. It has been successfully applied to various
geotechnical problems [38–46].

In this study, we propose to investigate the efficiency of several
well-known time-dependent models in the predictions of long-term 1-D
straining behavior of soft soils. The model updating is realized using the
Bayesian method and the transitional Markov Chain Monte Carlo
(TMCMC) method. Two groups of 1-D oedometer test data from intact
and reconstituted soft soil samples are employed for the model up-
dating. A total of nine models and their associated model class selec-
tions are conducted respectively. The analysis results indicate that the
most suitable model should be selected to capture the different char-
acteristics of deformation for different soil samples. The proposed
method can evaluate the corresponding uncertainty during the model
updating and hence the prediction with 95% credibility interval (CI)
can be computed.

2. Review of time-dependent models for soft soils

Many researchers have proposed models to describe the viscoplastic
strain rate for modeling the time-dependent behavior of soft soils. The
total strain rate is composed of the elastic strain rate εż

e and viscoplastic
strain rate εż

vp:
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where e0 is the initial void ratio, κ is used to denote the elastic behavior
of soil, and ′σz is the effective vertical stress. In the following, several
well-known time-dependent 1-D compression models for soft soils are
briefly reviewed. We will assess their performance in the simulation of
different soft soil samples, using probabilistic approach, in the later
sections.

(1) Yin and Graham [10,13] developed the idea of “equivalent time”,
and deduced a general EVP constitutive model for the 1-D straining
condition. This model uses a logarithmic function with a constant
creep coefficient to describe the creep compression:
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where λ is used to denote the elastic-plastic behavior of soil; ψ is a creep
parameter; t0 is the reference equivalent time, which is different from
the real test time; εz is the current total vertical strain; and εz

r
0 is the

vertical strain at ′ = ′σ σz zr .

(2) Yin [24] further proposed a non-linear function to model the creep
strain, which contains the creep coefficient ′ψ0 and creep strain limit

Nomenclature

t0 reference equivalent time
t elapsed time
e0 initial void ratio
γw unit weight of water
k hydraulic conductivity
u pore water pressure

′σzr reference effective stress
′σu unit effective stress
′σz effective vertical stress
′σp preconsolidation pressure
′σp

r
0 initial reference preconsolidation pressure

′σż effective vertical stress rate
εż

e elastic strain rate
εż

vp viscoplastic strain rate
εż total vertical strain rate
εz total vertical strain
εz

r elastic-plastic strain
εz

r
0 vertical strain at ′ = ′σ σz zr

εlm
vp creep strain limit

εoi intercept of the line in the ′ ′ −σ σ εlog( / )z p z
vp

0 plane
κ defines unloading-reloading behavior
λ defines the elastic-plastic behavior
λi intrinsic slope of the compression line

∗λi compression coefficient obtained at large strain where the
state of soil structure stabilizes under ongoing normal
consolidation stress paths

ψ creep parameter
′ψ0 creep coefficient

Cαe secondary compression coefficient
Cε compression index
Cp preconsolidation index
τ reference time in Vermeer model
Γ value of ′σlog p0 in a constant rate-of-strain test with a strain

rate = −ε ̇ 1 sz
vp 1

χ0 and ρ ( ∗χ0 and ∗ρ ) two structure parameters
C denotes the model class
D denotes the data
ε Cθ( ; )z m predicted vertical strains given model class C
ε zero-mean Gaussian random variable
σε

2 prediction error variance
θm model parameter vector
θ uncertain parameter vector, i.e., = σθ θ[ , ]T

ε
T

m
2

θm optimal parameter vector
f denotes the probability density function (PDF)
P denotes probability value
N number of measured data
s denotes the stage number
Ns total number of stage
ps random value used to decide the intermediate PDF
S evidence of model class
m denotes the different model classes
w plausibility weight
∑s covariance matrix
θs l, sample of parameter vector in TMCMC simulation
H0 height of soil sample
MAPE mean absolute percentage error
RMSE root mean square error
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