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a b s t r a c t

This paper presents a modified multi-yield-surface (MMYS) plasticity model employing a ‘sequential
closest point projection’ method that is consistent with the discretization of the backbone curve of a
multi-yield-surface (MYS) model. Compared with existing MYS models, the newly developed MMYS
model eliminates the main sources of numerical errors caused by inconsistencies between the model
and discretized backbone curve, which significantly improves the numerical stability and convergence
rate of the Newton–Raphson (N–R) iterative process at a structural level. Furthermore, tangent operators
consistent with the integration algorithm are derived, preserving the quadratic rate of convergence in the
N–R process. The MMYS model has been implemented in OpenSees, an open system for earthquake engi-
neering simulation, and verified by two application examples. The N–R process is more stable and gen-
erally converges faster when using the MMYS model rather than a MYS model. The advantages of the
MMYS model become more remarkable when the tolerance used in convergence criterion is tightened,
the external pushover force or seismic excitation is increased, or the time/load step size is enlarged,
regardless of the number of yield surfaces used in the models. This study enhances the capacity of the
existing MYS model that is widely used in geotechnical or soil–structure interaction (SSI) problems.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In geotechnical engineering, the multi-yield-surface (MYS) plas-
ticity model has been widely used to simulate the nonlinear cyclic
behaviour of soils under static pushover or dynamic loading condi-
tions. This model has been developed, improved and applied to
various geotechnical and soil–structure interaction (SSI) problems
by Iwan [1], Mroz [2–4], Prevost [5–7], Elgamal [8,9], and other
co-workers [10,11]. In the MYS plasticity model, the smooth back-
bone curve is discretized using a set of piecewise linear approxima-
tions, with each line segment corresponding to a single yield
surface of constant size (i.e., no isotropic hardening) in the stress
space. A field of plastic moduli [2,5] is employed to control the
flowing and hardening behaviour for each yield surface to achieve
a larger representation of the material’s plastic behaviour under
cyclic loading conditions. The flow rule corresponding to each yield
surface is the same as that used in a linearized J2 plasticity model
[6], while the hardening law is based on the rule that the surfaces
cannot cross each other when they touch and push each other.
During each Newton–Raphson (N–R) iteration process of a load

step, it is not possible to know in advance which and how many
yield surfaces will be touched (or activated) given a strain incre-
ment. Thus, the kernel algorithm used in the existing MYS plastic-
ity model is based on a ‘single predictor followed by multiple
correctors’ numerical scheme that only uses one elastic predictor
followed by several plastic correctors. The correction process is
repeated until the corrected stress lies inside the next larger yield
surfaces. However, this algorithm is inconsistent with the dis-
cretization method of the backbone curve and leads to the
accumulation of numerical errors. More importantly, this algo-
rithm might lead to numerical instability and cause
non-convergence of the N–R iterative process at the structural
level when the system is highly nonlinear. To overcome these
problems, a modified multi-yield-surface (MMYS) model is pre-
sented in this paper and applied to a pressure independent MYS
J2 plasticity model. The MMYS model uses a sequential closest
point projection method, or a sequential ‘elastic-predictors and
plastic-corrector’ method. The total strain increment in the current
step is subdivided into sequential sub-increments, such that the
increased stress corresponding to each sub-increment lies exactly
on the next larger yield surface and can be obtained using a single
‘elastic-predictor and plastic-corrector’ process. Many methods can
be used to divide the total strain increment into sub-increments,
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and in this paper, the direction of each sub-increment is kept the
same as the direction of the total strain increment for convenience.
Furthermore, a safeguarded Newton algorithm is employed to
obtain the length of each sub-increment. The ‘sequential closest
point projection’ method presented in this paper can be applied
to pressure independent and pressure dependent MYS models.
However, this method is not applicable to other types of models
that do not sequentially correct for stress, like the Cap plasticity
model. The MMYS model is consistent with a linearization of the
backbone curve in the sense that each single closest point
projection does not lead to the numerical errors as in existing
MYS models, which improves the numerical stability and increases
the convergence rate of the N–R process when using the MMYS
model. The MMYS model used in this paper (i.e., pressure indepen-
dent MYS J2 plasticity model) can be applied to other MYS models
defined in the literature [12–19]. The newly developed MMYS
model has been implemented in OpenSees to simulate geotechni-
cal or SSI problems. OpenSees [20] is an open source software
framework for advanced modelling and the simulation of struc-
tural and/or geotechnical problems developed under the auspice
of the Pacific Earthquake Engineering Research (PEER) Center
(http://peer.berkeley.edu) and has been widely used.

Furthermore, the consistent tangent moduli (also called the
algorithmic tangent moduli) of the MMYS model are derived, and
software is implemented in OpenSees to achieve efficient computa-
tion. Consistent tangent moduli are important for preserving the
asymptotic quadratic convergence rate of the N–R process at the
structural level. Detailed illustrations of consistent tangent moduli
can be found in the literature presented by Simo, Taylor and other
researchers [21,22]. These tangent moduli are consistent with the
numerical integration scheme of the material constitutive model,
which is obtained by differentiating the incremental constitutive
equations (Dr ¼ Dr Deð ÞÞ with respect to the total incremental
strains De instead of differentiating the rate constitutive equations
ð _r ¼ _rð _eÞÞ (with respect to the _e strain rate (i.e., the classical contin-
uum tangent moduli). A three-dimensional (3D) solid block sub-
jected to quasi-static cyclic loading conditions, and a 3D pile–soil
interaction system subjected to quasi-static and dynamic cyclic
loading conditions are used as examples. The Newton–Raphson
(N–R) iteration process at the structural level when using the newly
developed MMYS model exhibits greater numerical stability than
the existing MYS model. The advantages of the MMYS model over
the MYS model become more remarkable when the tolerance used
in the convergence criterion is tightened or the load step size
increases, regardless of the number of yield surfaces used in the
models. The results of this work enhance the capacity of the MYS
model by improving the finite element analysis capacity when using
the model to solve a wide class of geotechnical and SSI problems.

2. Mathematical expression of the multi-yield-surface J2

plasticity material model

In this section, a mathematical expression of the constitutive
pressure independent MYS J2 plasticity material model (i.e., the
yield surfaces, the flow rule and the hardening law) is summarized.
The complete formulations for this model are described in the lit-
erature [10–12,23].

2.1. Multi-yield surfaces

In the context of the pressure independent MYS J2 plasticity
model, each yield surface is defined in the deviatoric stress space
as follows:

f m¼
3
2

s�aðmÞ
� �

: s�aðmÞ
� �� �1

2

�KðmÞ ¼0 ðm¼1;2;3 . . .NYSÞ ð1Þ

where s denotes the deviatoric stress tensor, m denotes the number
of yield surfaces beginning from 1 to NYS, which is the total number
of yield surfaces. The parameters aðmÞ and KðmÞ represent the
back-stress tensor (the centre) and the size (

ffiffiffiffiffiffiffiffi
3=2

p
times the radius)

of the mth yield surface ff m ¼ 0g, respectively. In geotechnical engi-
neering, the nonlinear shear behaviour of the soil is described by
the shear stress–strain backbone curve [24], as shown in Fig. 1(a).
The experimentally determined backbone curve can be approxi-
mated using the following hyperbolic formula [11,25]:

s ¼ Gc
1þ c=cr

ð2Þ

where s and c denote the octahedral shear stress and shear strain,
respectively, and G is the low-strain shear modulus. Parameter cr

is the reference shear strain defined as cr ¼
cmax �smax

G�cmax�smax
, where smax,

the shear strength, is the shear stress that corresponds to the shear
strain c ¼ cmax (selected as sufficiently large so that
smax � sðc ¼ 1ÞÞ (Fig. 1). The stress–strain points used to define
the piecewise linear approximation of the originally smooth back-
bone curve are defined such that their projections on the s axis
are uniformly spaced [10]. Within the MYS plasticity framework,
the hyperbolic backbone curve used in Eq. (2) is replaced by a piece-
wise linear approximation, as shown in Fig. 1(b). Each line segment
represents the domain of a yield surface {fm = 0} of size K(m) that is
characterized by an elasto-plastic shear modulus H(i) for

i = 1,2 . . .NYS [8–10]. A constant plastic shear modulus, H0ðiÞ, is
defined for each yield surface {fi = 0}.

2.2. Flow rule

An associative flow rule is used to compute the plastic strain
increments. In the deviatoric stress space, the plastic strain incre-
ment vector lies along the direction normal to the yield surface
at the stress point. In tensor notation, the plastic strain increment
corresponding to each surface {fi = 0} is expressed as follows:

dep
i ¼

Lih i
H0ðiÞ

Q i ð3Þ

where the second-order unit tensor, Qi is defined as Q i ¼ 1
Qi

@f i
@r, in

which Qi ¼ @f i
@r : @f i

@r

n o1
2
, represents the plastic flow direction normal

to the yield surface {fi = 0} at the current stress point. The plastic
loading function parameter, Li in Eq. (3), is defined as the projection
of the stress increment vector ds in the direction normal to the yield
surface, i.e., Li ¼ Q i : ds. The symbol h i in Eq. (3) denotes the Mac-
Cauley’s brackets, which are defined such that Lh i ¼ maxðL;0Þ.

2.3. Hardening law

All yield surfaces ({fi = 0}, i = 1,2 . . .NYS) may be translated in
the deviatoric stress space to the current stress point without
changing the size of the yield surfaces (i.e., no isotropic hardening).
In the context of MYS plasticity, the hardening law for the current
(active) yield surface is different from that of the inner surfaces. For
current active yield surfaces {fm = 0}, the hardening law is generally
governed by the philosophy that no overlap is allowed between the
current and next yield surfaces. For the inner surfaces (hardening
of the inner surface is performed after the current active yield sur-
face {fm = 0} is updated), the consideration is that all inner yield
surfaces {f1 = 0}, {f2 = 0}, . . . , {fm�1 = 0} must be updated such that
all yield surfaces {f1 = 0} to {fm = 0} are tangent to each other at
the current stress point, s. A detailed description of the hardening
law can be found in the literature [8–11].
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