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h i g h l i g h t s

� A novel method is proposed for
predicting cemented paste backfill
(CPB) strength.

� Artificial neural network (ANN) and
particle swarm optimization (PSO)
are combined.

� Dataset is collected from 396
unconfined compressive strength
tests.

� PSO was efficient in the architecture-
tuning of the ANN.

� The optimum ANN model was
accurate at predicting CPB strength
with R = 0.979.
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a b s t r a c t

Cemented paste backfill (CPB) has been widely used to prevent and mitigate hazards produced during the
excavation of underground stopes. In practice, the strength of CPB is often an essential parameter for suc-
cessful stope design. We propose an intelligent technique in this study for predicting the unconfined
compressive strength (UCS) of CPB. This intelligent technique is a combination of the artificial neural net-
work (ANN) and particle swarm optimization (PSO). The ANN was used for non-linear relationships mod-
elling and PSO was used for the ANN architecture-tuning. Inputs of the ANN were selected to be the
tailings type, the cement-tailings ratio, the solids content, and the curing time. A total of 396 CPB spec-
imens under different combination of influencing variables were tested for the preparation of the dataset.
The results showed that PSO was efficient for the ANN architecture-tuning. Also, comparison of the pre-
dicted UCS values with experimental values showed that the optimum ANN model was very accurate at
predicting CPB strength.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Cemented paste backfill (CPB) is a mine composite material pro-
duced with filtered tailings, hydraulic binders and mixing water
and it has many operational, environmental and financial benefits.

Given safety regulations and environmental concerns, CPB pro-
vides ground support for mining operations, reduces ore dilution
and allows safe disposal of tailings. Moreover, the surface subsi-
dence can be minimized, thereby rehabilitation costs are reduced.

The advantages of CPB are dependent on its ability to remain
stable during the extraction of adjacent stopes. In practice, the
unconfined compressive strength (UCS) is usually utilised to esti-
mate the mechanical stability of CPB as UCS tests are simple, eco-
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nomical and have been successfully correlated with accepted sta-
bility over many years of experience. Many researchers have stud-
ied the effects of influencing variables on the UCS of CPB, such as
the tailings type, the binder content and the curing time [1–7].
However, experimental UCS determination is cumbersome and
costly when lots of UCS tests are required. This has driven the
search for easy and reliable methods to predict the UCS of CPB
specimens.

One method that may be useful for the UCS estimation of CPB
specimens is the utilisation of non-destructive methods such as
ultrasonic pulse velocity (UPV) and electrical resistivity (ER) tests.
Previous researchers [2,3,8–10] suggested the use of UPV and ER
tests, as a non-destructive, low cost, less time-consuming and easy
method in both the field and laboratory, for the assessment of the
UCS properties of CPB instead of the conventional UCS test. Though
it is very promising to use non-destructive methods for CPB
strength estimation, a general correlation between the UCS and
corresponding UPV values has not been established. Moreover,
the availability of UPV and ER equipment in laboratory and mine
site needs to be considered during the application of these
methods.

Another method is predicting the UCS of CPB directly from its
influencing variables using the artificial neural network (ANN)
approach, which has been widely used to model non-linear rela-
tionships between inputs and outputs in construction and building
materials [11–13]. The main advantage of the ANN is that non-
linear relationships between inputs and outputs are not pre-
assumed before the training is carried out. Only a limited number
of studies have been performed for predicting the UCS of CPB using
the ANN method [14–16]. Also, there is no ANN-based tool for pre-
dicting the UCS of CPB specimens under the combined effect of the
tailings type, the cement-tailings ratio, the solids content and the
curing time. Moreover, a limitation to the large-scale application
of the above studies is that the architecture of ANN was deter-
mined using empirical formulae, which may affect the perfor-
mance of ANN models. Particle swarm optimization (PSO) can be
used to find the optimum ANN architecture for UCS prediction.

The main objective of this study is to propose an intelligent
technique based on the ANN and PSO approaches for predicting
the UCS of CPB under the combined effect of four important influ-
encing variables. The PSO-ANN method is a new technique for pre-
dicting the UCS of CPB, and there are no studies so far being
published in the literature. Also, the combined effect of the tailings
type, the cement-tailings ratio, the solids content and the curing
time on the UCS of CPB has not been studied using the PSO-ANN
method. This study is thus the pioneer work in the application of
the ANN and PSO approaches for CPB strength prediction, which
is of great significance to the engineering application of CPB.

2. Materials and methods

2.1. Mechanical tests

Three types of tailings were used for the specimen preparation.
The grain size distribution was determined using a laser diffraction
particle size analyser (Malvern Mastersizer 2000) and the mineral-
ogy of the tailings was determined using X-ray diffraction (XRD;
Bruker AXS D8 Advance Diffractometer) as shown in Fig. 1. The
mineralogical composition was quantified using the Rietveld
method and the physico-chemical characteristics of tailings are
summarized in Table 1. Common Portland cement was used as a
binder and tap water was used as the mixing water. Based on expe-
rience and some trial tests, cement-tailings ratios were prepared at
1:4, 1:6, 1:8 and 1:10. The solids content for three types of tailings
(shown in Appendix) was slightly different as very large differ-

ences exist in their grain size distributions (Fig. 1). CPB mixtures
were fully mixed and poured into plastic moulds (50 mm in diam-
eter and 100 mm in height). These moulds were then sealed and
cured for 3, 7 and 28 days at approximately 25 �C and 90% humid-
ity. A total of 396 CPB specimens were prepared. Three replicates of
each test were carried out and the dataset for the construction of
ANN models utilised the mean UCS values.

The UCS value was obtained according to ASTM C 39 [17]. A
WDW-2000 rigid hydraulic pressure servo machine (Ruite, Guilin,
China) was used for UCS tests with a deformation rate of 0.5 mm/
min.

2.2. ANN

The ANN is a computational paradigm that maps inputs to out-
puts using a directed set of interconnected neurons. Each neuron is
a basic computation unit that performs y ¼ maxð0;Piwixi þ bÞ,
where fxig are the neuron inputs, fwig are the weights, b is bias
and y is the neuron output.

All neurons are connected in a layered architecture, where the
mapping between inputs and outputs is conducted using the fol-
lowing formula:

hi ¼ maxð0;Wi � hi�1 þ biÞ for 1 6 i 6 L; and h0 ¼ x ð1Þ

y ¼ maxð0;V � hLÞ ð2Þ
where L is the number of layers, matrices W1; . . .WL;V and vector
b1; . . .bL are model parameters learned from the dataset.

The ANN was trained using the dataset collected from UCS tests.
Inputs of the ANN were the tailing type, the cement-tailings ratio,
the solids content, and the curing time while the output was the
UCS value. The whole dataset was divided into two parts: the train-
ing set (80%) and the testing set (20%). 10-fold cross validation was
used as the validation method. The architecture of the ANN was
first tuned by PSO before its application based on the mean
squared error (MSE), which is defined as:

MSE ¼ 1
N

XN

i¼1
ðy�i � yiÞ2 ð3Þ

where N is the number of data samples, y�i and yi are the predicted
and experimental UCS values of the ith data sample.

2.3. PSO architectures-tuning

PSO is a powerful optimization technique for finding a global
optimum in a multi-dimensional searching space [18]. The PSO
process started with a randomly generated swarm of particles
and each represented a specific ANN architecture. The fitness of
particles’ position were evaluated by the MSE on the training set.
To be more specific, an ANN architecture that achieves a lower
MSE will be represented by a particle with higher fitness. The next
swarm was generated by the position-update of particles, which
considered the swarm best position in history and each particle’s
best position in history. Swarms of particles progressively moved
to the optimum position until the maximum iteration was reached.
The position-update formula for particles used in this paper are:

Vtþ1
i ¼ wVt

i þ c1r1ðpt
best;i � Xt

i Þ þ c2r2ðgt
best;i � Xt

i Þ ð4Þ

Xtþ1
i ¼ Xt

i þ Vtþ1
i ð5Þ

where Vtþ1
i and Vt

i represents the velocity of particle i at iteration t

and t þ 1; Xtþ1
i and Xt

i represent positions of particle i; w, c1 and c2
are the inertia parameter, the cognitive influence parameter and the
social influence parameter; r1 and r2 are random values between 0
and 1; pt

best;i and gt
best;i represent the best position of a particle and
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