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a b s t r a c t 

This paper presents a building stock energy model for the estimation of hourly electricity consumption 

for a large group of residential buildings. A Monte Carlo model stochastically generates a large sample of 

dwellings representative of the building stock and the correspondent number of user profiles, statistically 

supported by a web survey about the use of energy in dwellings for space heating and cooling. The 

model uses hourly energy balance equations to estimate energy needs and calculates the mean annual 

electricity consumption for regularly occupied dwellings with an error below 3%. Model is also validated 

against independent smart-metered data of about 250 dwellings. Hourly electricity consumption results 

feature an overall normalised mean absolute error of 11% and normalised root mean square error of 16%. 

The maximum relative difference is ± 72% and the maximum absolute error is � 217 Wh/h. The model is 

considered to be able to predict hourly electricity consumption accurately. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The energy demand of the residential sector represents about 

30% of the world electricity demand [1] . This is an energy sink dif- 

ficult to characterise since it features a wide variety of buildings 

and occupant behaviors, and large-scale collection data is hindered 

by its spatial distribution and privacy issues. Hence, many different 

models and approaches have been developed for estimation of the 

residential sector energy load, as reviewed by Swan and Ugursal 

[2] and Li et al. [3] . 

The development of realistic models capable of estimating 

hourly or sub-hourly aggregated demand profiles is more recent. 

They are critical tools for accurate load forecasting, the planning 

of electricity distribution grids and optimisation of the generation 

capacity. In fact, focus on hourly data allows addressing emerging 

matters such as peak demand management or demand-supply bal- 

ancing strategies developed in the context of fast emerging distri- 

bution generation (e.g. rooftop photovoltaics) [4] . 

This type of models is also relevant for the understanding of 

the impacts of changes in climate or energy policies on the con- 

sumption patterns of the residential sector. 

The main goal of this paper consists of developing and vali- 

dating a building stock energy model for the estimation of hourly 
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electricity consumption for a large group of residential buildings 

(at the regional and national scale). The option of selecting the Lis- 

bon city in the validation process is justified by the availability of 

smart-metering data of about 250 dwellings during a monitoring 

campaign in 2011–2013 by Lisboa E-Nova, in the framework of “In- 

telligent Monitor for Efficient Decisions” project, funded by Energy 

Services Regulatory Authority (ERSE), under the National Plan for 

Promoting Efficiency in Electricity Consumption 2011–2012 [5] . 

This paper is organised as follows: Section 2 presents a re- 

view of the state of the art on building stock energy mod- 

els; Section 3 describes the energy model with the exception of 

user behaviour that is explained in Section 4; Section 5 presents 

the model results compared with validation data; and finally, 

Section 6 synthesises the main conclusions and discusses the po- 

tential for future work. 

2. Literature review 

Predictive tools to estimate how much energy a large group of 

buildings use are known as building stock energy models [6] . What 

these models have in common is their focus on large areas, instead 

of a single or a small number of buildings. There are a large multi- 

plicity of models specifically developed to predict the residential 

sector energy consumption that Swan and Ugursal [2] classified 

into top-down or bottom-up, the latter subdivided into statistical 

or physics-based. 

Top-down models use as main data source historical data of the 

use of energy combined with macro-scale indicators from differ- 
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nomenclature 

Symbols 

A area [m 

2 ] 

A f net floor area [m 

2 ] 
ˆ A normalised area (by net floor area) [–] 
ˆ A sol effective solar collecting normalised area [–] 

b tr adjustment factor [–] 

c specific heat [J kg −1 K 

−1 ] 

F g frame correction factor [–] 

F s shading factor [–] 

F w 

selective glazing correction factor [–] 

g solar heat gain coefficient [–] 

G sol solar irradiation integrated over time [Wh m 

−2 ] 

h ceiling-to-floor height [m] 
ˆ H normalized (by net floor area) global heat transfer 

[W K 

−1 m 

−2 ] 

l � length of linear thermal bridges [m] 

Q C cooling energy demand [Wh] 

Q gn heat gains [Wh] 

Q ht heat losses [Wh] 

Q H heating energy demand [Wh] 

Q sol solar gains [Wh] 

Q average annual electrical consumption [Wh] 

U overall thermal transmittance [W m 

−2 K 

−1 ] 

t hour interval [h] 

ˆ v air change rate [h 

−1 ] 

y observed (or measured) variable 

ˆ y modelled variable 

δ relative difference [–] 

θ i indoor air temperature [ °C] 

θ o outdoor air temperature [ °C] 

θ mean temperature [ °C] 

κ (first) shape factor of Weibull and Burr distribu- 

tions 

λ scale factor of Weibull and Burr distributions 

ν average of Gaussian distribution 

μ second shape factor of Burr distribution 

ρ volumetric density [kg m 

−3 ] 

σ standard deviation of Gaussian distribution 

� linear thermal bridge transmittance [W m 

−1 K 

−1 ] 

Subscripts 

1 → n 1 to n batches 

1 → n − 1 1 to n − 1 batches 

⊥ normal incidence 

a air 

e external envelope 

g ground floor 

E all end-uses 

gl glazing 

i internal envelope 

i time-step (hourly, monthly, annual) 

j façade orientation 

H space heating 

m total number of time-steps (hourly, monthly, an- 

nual) 

min average of daily minimum 

max average of daily maximum 

op opaque envelope 

n number of batches 

sh fully active shading devices 

tr transmission 

ve ventilation 

w windows 

Acronyms 

ANN artificial neural networks 

COP coefficient of performance 

EER energy efficiency ratio 

DHW domestic hot water 

EPC energy performance certification/certificates 

GIS geographic information system 

MAXAD maximum absolute difference 

MAXRD maximum relative difference 

NMAE normalised mean absolute error 

NRMSE normalised root mean square error 

NUTS III third level division of territorial units for statistics 

TMY typical meteorological year 

UBEM urban building energy models 

ent categories: macroeconomic, climatic, housing stock rates, de- 

mographic or technological. Examples of top-down residential final 

energy estimation are those developed for Denmark [7] , Switzer- 

land [8] and UK [9] . The model developed for Turkey includes final 

energy of the commercial sector [10] . Top-down models do not re- 

quire an intensive characterisation of the buildings, appliances or 

end-uses. Since time-series for disaggregated end-uses are seldom 

available, top-down models are not adapted to predict energy con- 

sumption by end-use. 

Bottom-up models require the setting of a group of buildings, 

usually theoretical buildings representative of the building stock 

defined as ‘archetypes’ or ‘prototypes’ [11,12] . The building stock 

is rebuilt by attributing a representative factor to each one of the 

building types. An alternative strategy is to focus on a group of real 

buildings (a ‘sample’) representative of the overall building stock. 

The energy demand of the buildings may be determined by 

physics laws (e.g. energy conservation principles) or statistical 

models. Statistical models include artificial neural networks (ANN), 

time series models, similar day look-up and regression-based ap- 

proaches. The smaller amount of input data constitutes the main 

strength of this type of models. However, the uncertainty of the 

predictions of the statistical models evaluated in Soto and Jentsch 

[13] are higher than for physics-based model, which is attributed 

to their inherent simplifications. 

The outputs of the building stock models are generally re- 

stricted to annual, and in a few cases monthly, energy consump- 

tion. From the nine models included in the revision of Kavgic et al. 

[6] only three of them make monthly estimates [14–16] , all other 

models make annual estimates. 

Urban Building Energy Models (UBEM) are specifically targeted 

to predict hourly energy for neighbourhoods (urban scale), an in- 

termediate scale between the single building and building stock, 

based on Geographic Information System (GIS) buildings descrip- 

tion [17] . Increasing the order of magnitude of the number of 

time-steps ( ∼ 10 4 for the hourly scale) requires handling a signif- 

icant amount of information, massive in time and space, leading 

to very simplified models or the definition of a limited number 

of buildings archetypes and users’ types. Currently, this is not a 

real constraint since most of the urban energy models applied to 

neighbourhoods, cities or regions of Table 1 , use physical models 

with hourly time-step even if results focus on annual and monthly 

energy consumption [12,18–22] . Explicit hourly profiles are only 

found in [11,23] . 

Providing hourly (or sub-hourly) energy estimates requires 

hourly (or sub-hourly) data for validation. None of the models 

listed in Table 1 use hourly data in the calibration process. Sokol 

et al. [22] used monthly energy consumption data to calibrate a 

UBEM [24] based on a 76 archetypes library of a mix of residential 
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