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A B S T R A C T

In this paper, an approach based on the finite element method to model the behavior of concrete beams with
unbonded prestressing steel over time, and an improved simplified equation for calculating the prestress losses in
statically determinate prestressed concrete members with unbonded internal tendons are proposed. Both
methods take into account the effects of the concrete creep, concrete shrinkage, prestressing steel relaxation and
the presence of the bonded non-prestressed reinforcement. In addition, a generalization of the Step-by-Step and
the Age-Adjusted Effective Modulus methods for the time cross-sectional analysis of prestressed concrete
members with unbonded internal tendons is presented. The accuracy of the proposed equation is evaluated
based on the results of previous studies and is contrasted with the computational implementation of the Step-by-
Step Method. As the main conclusions, we mention that the results show that the proposed equation adequately
predicts the prestress loss and has higher accuracy compared to simplified existing models.

1. Introduction

The term “unbonded prestressed” is used for prestressed concrete
members in which there is no bonding between the concrete and the
prestressing steel or, if it exists, it is so small that a perfect bond be-
tween the two materials cannot be considered. Unbonded prestressing
can be divided into two different types: internal and external pre-
stressing. In internal prestressing, the tendons are embedded in the
concrete, such as in the case of beams and post-tensioned flat slabs,
whereas in external prestressing, the tendons are not embedded in the
concrete, such as in box girder bridges.

The behavior of the members with internal prestressing is char-
acterized by the fact that the position of the tendon at any section does
not change with the deformation of the member, whereas in external
prestressing, when the element is deformed, the position of the tendon
is conditioned by the displacement of both the anchor and the deviator
points of the tendon.

The analysis of prestressed concrete members with unbonded pre-
stressing tendons is inherently more complex than the analysis of
members with bonded prestressing tendons, since, unlike bonded pre-
stressing tendons, there is no strain compatibility between the tendons
and the surrounding concrete, which means that the prestressing ten-
dons and concrete can move with respect to each other. Then, the stress
in unbonded tendons will depend on the deformation of the structural

member as a whole. In other words, the stress in the tendon in an un-
bonded prestressed concrete member subjected to external loads is
member-dependent instead of section-dependent [1].

Without loss of generality, we can establish that from the 1960s,
different researchers have placed greater emphasis on the study of the
behavior of structures with unbonded prestressing, in particular the
behavior of beams and slabs [2]. Thereafter, most research has focused
on predicting the behavior of these elements at ultimate strength
[1–17]; however, there are relatively few research works focused on
predicting the behavior of members in bending under short-term ser-
vice loads [12,14–16,19] and even fewer that allow prediction of the
behavior in bending under long-term service loads [11,15,18,20].

To study the time-dependent behavior of unbonded prestressed
concrete members under service load, CEB-FIP [18] establishes an
equation for estimating the prestress loss based on the Rate of Creep
Method [21,22]. This method is based on the assumption that the rate
of change of creep with time is independent of the age at loading;
however, new researches show that this hypothesis is not correct [23].
Gauvreau [11] proposes a simplified equation to estimate the loss of
prestress due to time effects in members with unbonded internal ten-
dons. However, this equation does not take into account the relaxation
of prestressing steel or the presence of non-prestressed reinforcement.
For long-term analysis, Lou et al. [15] use a formulation based on the
finite element method. Although the methodology used by the authors

https://doi.org/10.1016/j.engstruct.2018.07.038
Received 21 November 2017; Received in revised form 7 June 2018; Accepted 14 July 2018

⁎ Corresponding author.
E-mail addresses: ppaez@fing.edu.uy (P.M. Páez), sensale@fing.edu.uy (B. Sensale).

Engineering Structures 174 (2018) 111–125

0141-0296/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2018.07.038
https://doi.org/10.1016/j.engstruct.2018.07.038
mailto:ppaez@fing.edu.uy
mailto:sensale@fing.edu.uy
https://doi.org/10.1016/j.engstruct.2018.07.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2018.07.038&domain=pdf


for the time-dependent analysis can be called “step by step”, meaning
that it is done by dividing the time interval into small intervals, the
creep compliance function used is not the one recommended by the
different codes but its form has the advantage of facilitating program-
ming with respect to the simulation of the history of applied stress. On
the other hand, the use of the proposed procedure by the Finite Element
Method requires a high degree of computational programming. Guo
et al. [20] propose a model to predict the time-dependent losses in
prestressed concrete members. This model takes into account the effect
of shrinkage, creep of concrete, and relaxation of steel. However, al-
though the authors use the method for either bonded or unbonded
prestressing, the method is based on the bond hypothesis and therefore
its use for unbonded prestressed members is not entirely correct.

In view of current trends of the standards based on the “Limit States
Design”, it is just as important to predict the behavior of the members
under service load conditions, in particular under long-term service
loads, as it is to predict the behavior of the unbonded prestressed
members at ultimate flexural strength. It is important to estimate the
prestress losses as accurately as possible, since an incorrect estimation
can cause serviceability problems; for example, the tensile strength of
concrete can be exceeded under service loads and/or can lead to ex-
cessive camber [24].

In most practical applications with prestressing, the members are
calculated so that, under the action of long-term loads, all sections are
in uncracked state (State I); that is, the tensile stress in the extreme fiber
of concrete has not reached its modulus of rupture, and therefore the
creep deformations of the concrete will tend to be much greater than in
the case of partially prestressed concrete members. The effects of creep,
shrinkage, and relaxation of the steel will cause a redistribution of
stresses between the steel and concrete, which will generally result in a
loss of the prestressing force and therefore an increase in the de-
formations.

This paper is motivated by the need to predict the behavior of
prestressed concrete members with unbonded internal tendons under
long-term loads. The main objective of this work is to propose a sim-
plified equation to calculate the prestress losses in statically determi-
nate prestressed concrete members with unbonded internal tendons,
taking into account the effects of concrete creep, concrete shrinkage,
prestressing steel relaxation, and the presence of the bonded non-pre-
stressed reinforcement. The second objective of this work is to develop
the formulation of the Step-by-Step Method (SSM) and the Age-
Adjusted Effective Modulus Method (AAEM) for long-term analysis of
prestressed beams with unbonded internal tendons; to date, there is no
literature or research work that has developed such a formulation.
Finally, an approach based on the finite element method (FEM) to
model the behavior of concrete beams with unbonded prestressing steel
over time is proposed. The originality of this technique lies in its
treatment of long-term effects. Also in this paper, a computational al-
gorithm based on the Step-by-Step Method from the basic principles of
the Strength of Materials will be implemented (without using Finite
Element Method). The accuracy of the proposed equation was eval-
uated based on the results of previous studies and was contrasted with
the computational implementation of the Step-by-Step Method. The
results show that the proposed equation adequately predicts the pres-
tress loss and has higher accuracy compared to existing simplified
formulations.

2. Constitutive equations of materials: instantaneous and time-
dependent behavior

2.1. Concrete

For normal strength concretes, that is, for concretes whose char-
acteristic compressive cylinder strength at 28 days is less than 50MPa,
a linear elastic behavior in compression can be considered for stress
levels below about 40% of the characteristic cylinder strength.

Therefore, the stress–strain relationship for concrete in compression can
be expressed as Eq. (1):

=σ E εc c e (1)

where σc is the concrete stress produced by a compression strain εe and
Ec is the modulus of elasticity of concrete. The modulus of elasticity of
concrete can be calculated from the models provided in the different
standards, for example, that provided by the MC10 [25].

The total concrete strain at time t in an uncracked concrete member
uniaxially loaded at constant temperature may be expressed as the sum
of the instantaneous strain, ε t( )e , the creep strain between the times t0
and t , ε t t( , )cr 0 , and the shrinkage strain between the time ts and t ,
ε t t( , )sh s , with t0 the age of concrete at loading and ts the age of the
concrete at the beginning of drying [26] (Eq. (2)):

= + +ε t ε t ε t t ε t t( ) ( ) ( , ) ( , )e cr sh s0 (2)

Shrinkage strain in concrete can be defined as the time-dependent
strain of a concrete specimen in a given environment, where displace-
ment of the specimen is not restricted and the specimen is not subject to
external load [27]. Shrinkage strain can be calculated from the model
provided by MC10 [25].

If a concrete specimen is subjected to a compressive stress at time
=t t0, σ t( )c 0 , which is kept constant in time, the creep strain at time
>t t0 is given by Eq. (3):

=ε t t φ t t σ t
E t
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( )cr

c

c
0 0

0

0 (3)

where φ t t( , )0 is the creep coefficient and E t( )c 0 is the modulus of
elasticity of concrete at time =t t0. The value of the creep coefficient
can be calculated from the model proposed by MC10 [25].

If the magnitude of stress varies with time, which is usual in con-
crete structures, creep strain can be obtained from the principle of su-
perposition. The principle of superposition was applied to concrete for
the first time by McHenry [28] and requires the fulfillment of certain
hypotheses to obtain sufficiently accurate results. These hypotheses are
often referred to as linearity assumptions [29] and can be stated as
follows: (a) the stress in the concrete is less than 40% of the char-
acteristic compressive strength, fck; (b) ε is not decreasing; that is, strain
of decreasing magnitude does not take place; (c) there is no significant
change in moisture content; and (d) there are no sudden changes in
stress. In most practical applications of civil engineering, these as-
sumptions are fulfilled, so the principle of superposition is usually ac-
cepted in most analyses and calculations. The strain in concrete at time
t caused by a given stress history is obtained from Eq. (4):
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If the change in stress between t0 and t , σ tΔ ( )c , is known, Eq. (4) can be
written in simplified form [30–32] as Eq. (5):
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where E t t( , )c 0 is the age-adjusted effective modulus, whose expression is
given by Eq. (6):
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χ t t( , )0 is the aging coefficient, whose expression is given by Eq. (7) [31]:
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where E t t( , )R 0 is the relaxation function of the concrete, defined as the
stress at time t due to a unit strain applied at time t0 and kept constant
throughout the period t0 to t . Values for the relaxation function can be
calculated by applying Eq. (4) to the case of a constant unit strain
history beginning at t0 or they can be calculated from the approximate
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