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A B S T R A C T

This is the third part in a trilogy of papers examining ways in which additive manufacturing can be used to
facilitate the introduction of basic principles in structural analysis. Each paper uses 3D-printing and simple, but
non-trivial, slender geometric forms, to provide a hands-on aspect to structural behavior in which flexure plays a
dominant role. The first part dealt with linear structural analysis (Virgin, 2017), extended to dynamics and
vibration in the second part (Virgin, 2017). The current paper focuses on slender structures in which compressive
axial loading is the new ingredient and hence buckling becomes a central issue. This has similarities and dif-
ferences with the two previous papers, but in all instances the role played by relatively high-precision 3D-
printing opens the door to versatile and effective illustration, and the development of a deeper appreciation of
structural phenomena.

1. Introduction

Buckling is almost always introduced using the pin-ended Euler
strut. There are many reasons for this. It occupies a key position in the
historical development of ordinary differential equations and their
practical application. The pin-ends results in mathematical con-
venience, e.g., the zero bending moment at each end allows a model in
the form of a second-order ordinary differential equation (rather than
the more general fourth-order); an especially simple buckled mode
shape (a half-sine wave); and conveniently forms the basis of effective
length to incorporate other boundary conditions. However, there are a
number of reasons why the modeling idealizations associated with pin-
ended, purely axially-loaded, perfectly straight columns are relatively
restrictive, including:

• sensitivity to geometry - most often encountered with a slight lack of
straightness (initial geometric imperfection); a small lateral load
(for example the effect of gravity in the case of a horizontal
member); or an eccentricity in the application of the axial loading.
No real structure is purely symmetric.

• boundary conditions that are intermediate between the standard
cases, for example, when a column is part of a framework, and thus
a specific column has a degree of elastic constraint at its ends.

• what happens after buckling? The linear theory only tells us that a
non-trivial equilibrium configuration occurs at a critical point.

These effects are typically non-negligible in many applications of
buckling, and in general conspire to make a linear eigenvalue analysis

less useful when bending and buckling interact. The underlying Euler
buckling problem is still useful as a fundamental concept and orga-
nizing center, but in this paper we seek to introduce an approach to
buckling in which Euler buckling is introduced within the broader,
more practical context of imperfect geometry and loading.

The capabilities of 3D-printing will be exploited to examine prac-
tical buckling issues, incorporating the three issues mentioned above
with relatively precise geometry. A modular experimental set-up is
described in which these effects can be examined in isolation or to-
gether, with the goal of providing a more comprehensive study than a
typical introduction.

A number of standard analytical techniques will be used: solving the
governing differential equations and using the matrix stiffness method,
together with a simple approximate method, to verify the behavior
observed in the testing of 3D-printed structures. The main emphasis (in
similarity with the first two parts of this trilogy) is to illustrate the effect
of geometry on buckling behavior. The direct comparison of theory and
experiment depends on accurate measurements and appropriate values
of Young’s modulus etc., and although this paper includes some analysis
for context, the important concept developed is how buckling is influ-
enced by changes in geometry, boundary conditions and so on, in a
comparative sense.

The use of simple physical buckling models is especially effective in
the teaching realm, given the often sudden onset of buckling phe-
nomena. The careful illustration of buckling using physical models was
notably developed at University College London (UCL) and
Northwestern University [3–5].

https://doi.org/10.1016/j.engstruct.2018.07.059
Received 8 June 2018; Received in revised form 16 July 2018; Accepted 17 July 2018

E-mail address: l.virgin@duke.edu.

Engineering Structures 174 (2018) 338–345

0141-0296/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2018.07.059
https://doi.org/10.1016/j.engstruct.2018.07.059
mailto:l.virgin@duke.edu
https://doi.org/10.1016/j.engstruct.2018.07.059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2018.07.059&domain=pdf


2. Geometry of interest

2.1. Slenderness

For a structural element to suffer buckling it needs to be ‘slender’
and subjected to compressive axial loading, such that the system finds it
easier to resist loading by a lateral deflection (orthogonal to the di-
rection of loading) rather than a pure axial deformation [6,7]. A non-
slender squat member will deform and fail in an axial sense, usually
from material yielding. The conventional definition of what constitutes
a slender column is given in terms of a slenderness ratio L r/ , where L is
the length (or effective length) of the member, and =r I A/ is the
radius of gyration. For a rectangular cross-section of width b and
thickness d we have a second moment of area of =I bd /123 , area

=A bd, and thus =r d/ 12 , and =SR L d12 / . The distinction be-
tween squat and slender is not a clear-cut division (and many practical
columns fall into this intermediate range), but it is generally recognized
that an axially-loaded member would likely be susceptible to buckling if
its slenderness ratio is greater than about 100. For the physical systems
to be described later in this paper a typical geometry (in mm) might be

≈ − ≈ −L b100 115, 10 15 and ≈ −d 1 2 and thus a SR ranging from about
200 to 400, and despite the effective length (to be described in detail
later) often being a little smaller than the actual length we will be
considering unambiguously slender structural members. And this slen-
derness range falls squarely within the size and resolution capabilities
of most 3D-printers, even though 3D-printing is conventionally focused
on components that are typically not slender or subjected to flexure.

2.2. A column with some end constraint

Based on the archetypal system to be described later, we develop a
baseline model for a slender axially-loaded column with one end
clamped and the other end pinned but with rotation constrained by a
torsional spring [8–14]. This is shown schematically in Fig. 1. The
column has length L, flexural rigidity EI, a rotational spring at the right
end of coefficient C (and later to be associated with the influence of
adjacent structural members). Subjected to an axial force P we seek the
behavior of the lateral deflection W x( ), specifically where its rate of
increase grows rapidly: buckling. As mentioned in the introduction, in
addition to the elastic constraint at the boundary, we will also in-
corporate an initial geometric imperfection in the form of a non-flat
shape (shown exaggerated in part (b)), and an eccentric point of ap-
plication ∊ of the axial load P. Both of these apparently minor effects are
quite typical in practice, and destroy the symmetry of the system
[16,17].

One of the useful pedagogical aspects of this system is that the an-
ticipated buckling behavior is bracketed by extreme cases: when the
torsional spring is very weak, i.e., →C 0, we expect buckling close to
the clamped-pinned case ( →P EI π L2 ( / )cr

2), and when the torsional
spring is very stiff, i.e., → ∞C , we expect the clamped-clamped case
( →P EI π L4 ( / )cr

2).
We shall focus on a number of techniques of varying degrees of

utility in buckling analysis ranging from the classical differential ap-
proach to matrix structural analysis. Within this range are a variety of
energy-based, Rayleigh-Ritz approaches but we shall not focus on these
in the current paper.

2.3. The classical approach

Based on Euler-Bernoulli beam theory, the governing equation for
the initially flat, axially-loaded column is given by [7,21]

+ =EI d W X
dX

P d W X
dX
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subject to the boundary conditions: for clamped at =X 0 we require
=W (0) 0 and =dW dX(0)/ 0, and for elastic rotational constraint at

=X L we have =W L( ) 0 and + =EI d W L dX C dW L dX[ ( )/ ] [ ( )/ ] 02 2 . It
is convenient to nondimensionalize using =w

= = =W L x X L p PL EI λ CL EI/ ; / ; / ; /2 2 to obtain:

+ ″ =⁗w p w 0,2 (2)

where a prime denotes differentiation with respect to x, and the
boundary conditions become: =w (0) 0 and ′ =w (0) 0 at =x 0; and

=w (1) 0 and ″ + ′ =w λw(1) (1) 0 at =x 1.
The general form of the solution to Eq. (2) is
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and applying the boundary conditions leads to:
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Setting the determinant equal to zero for non-trivial solutions leads to a
characteristic equation with a lowest root p λ( ) corresponding to
buckling. This relation is shown in Fig. 2, in which we see the two
extremes: clamped-pinned, →p π2cr

2; clamped-clamped, →p π4cr
2.

2.3.1. Effective length
Given the central role played by the Euler buckling load for a

pinned-pinned column ( =P EI π L( / )cr
2) it is natural to relate other

boundary conditions back to this case. A physical motivation for doing
this is that the buckling of a column with various boundary conditions
can be envisioned as subsuming a pin-ended column in which the
length is taken as the distance between points of inflection (where the
bending moment is zero) - the effective length Le. The effective length
for a clamped-clamped column is =L L0.5e and for a clamped-pinned
column is ≈L L0.7e , and plugging these value into the Euler expression
furnishes the values at the extreme ranges of the column with some
elastic torsional end constraint.

2.3.2. Buckling mode shapes
The buckled mode shape is found by eliminating B C, and D from

Eq. (4) to give
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in which A is arbitrary, and p is obtained from the determinant for a
given λ. For example, Fig. 3 shows the buckling mode shapes for =λ 0
and 60, in which the latter is practically the clamped-clamped mode
shape. By setting the second derivative of the mode shape equal to zero
we can find the points of inflection and the distance between them gives
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Fig. 1. (a) A schematic of an axially-
loaded column, with rotational elastic
constraint at one end, (b) with a small
initial deflection, (c) with a small axial
load eccentricity.
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