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A B S T R A C T

Based on theoretical analyses, the development of buckling mode of steel core is revealed for buckling restrained
braces (BRBs) with fixed ends. The formulae are derived for the bending moments of the stiffening part of the
core and restraining member of BRBs. Then a global stability design method of fixed-end BRBs is proposed. The
results of the contact force, flexural response and buckling half wavelength with finite-element analysis agree
with the theoretical analysis. The design criteria as well as the buckling half wavelength were validated by the
quasi-static tests of five BRBs. Compared to existing methods, the proposed design approach can ensure a proper
safety margin of the stiffening part.

1. Introduction

Buckling-restrained braces (BRBs) can be designed to sustain
yielding under both compression and tension without significant
buckling. Therefore, BRBs have been widely used to dissipate seismic
energy in seismic regions. The steel core of a BRB is encased in a re-
straining member to dissipate energy, and the restraining member is
designed to prevent the core from failing following an earthquake
[1–9]. Global stability of BRBs has been one of the most concerned
issues and has attracted wide attention from many researchers in recent
years [10–21].

Shimizu et al. [11,12] proposed a widely used global stability design
criterion based on the analytical model of BRBs ignoring the effect of
boundary condition of the steel core. The design formula has been
adopted by Japanese and Chinese standards [13,14], and it was also
widely accepted by researchers and engineers [15–17]. However, the
flexural demands might be different caused by various connections, i.e.,
bolted, welded and pinned connections. Tests [11] revealed that the
additional flexural demand at the end of BRBs would be caused by the
in-plane rotation of joint panel for bolt-connected BRBs. Even more,
this rotation of joint panel would also lead to an additional bending
moment on the restraining member, which was validated by Tremblay’s
substructure testing [18]. The boundary constraint at both ends of pin-
connected BRBs may be like that of hinged ends because of the isolated
bending moment from the gusset plates by pins, and the ones of bolt-

connected and weld-connected BRBs should be closer to those of fixed
ends due to the strong constraint.

Based on the analytical model of hinged-end BRBs, Zhao et al.
[19–21] studied the critical influences of the flexural demand on both
of the stiffening part and the restraining member for the pin-connected
BRBs, and Wu et al. [22] proposed a global stability design criterion of
BRBs considering the stiffening part of the steel core and the effect of
friction; Based on the analytical model of fixed-end BRBs, Usami et al.
[23] established a continuous fixed-end flexural bar model with a non-
uniform cross-section for the weld-connected BRBs. Although the global
stability design method based on the former analytical model might be
used for the bolt-connected or weld-connected BRBs, it is still not sure
that regarding the bolted or welded BRBs as hinged-end BRBs will lead
to a more conservative design result than that corresponding to the
BRBs with fixed ends.

This paper first investigates the flexural demands of bolt-connected
and weld-connected BRBs based on the analytical model of fixed-end
BRBs, including the restraining member and the stiffening part. A nu-
merical validation with finite element analysis follows. Finally, five
quasi-static test results are used to verify the formulae proposed in this
paper.

2. Flexural demands of BRBs with fixed ends

The analytical fixed-end model is shown in Fig. 1, where δ0 denotes
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the initial deflection of the restraining part, C is the total clearance
between the steel core and the restraining member, l is the total length
of the BRB, lr and ly are the lengths of the restraining member and
yielding segment, respectively, le is the stiffening part of the steel core,
l1 is the stiffening part outside the restraining member, l2 is the stif-
fening part inside the restraining member, P is the axial load, and Mf is
the fixed-end bending moment of steel core.

2.1. Lower mode

The steel core will buckle and the contact forces N1 and N2 will be
generated as the axial load increases, as shown in Fig. 2. According to
lateral equilibrium, N1 is half of N2, and the moment equilibrium
equation of one half of the core may be expressed as follows:
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and the moment equilibrium equation for the restraining member is
expressed as

″ = − − ⩽ ⩽E I y N x l l x l( )( /2)r r r1 1 1 1 (4)

The corresponding boundary conditions include the zero rotation of
the steel core located at the left end of the l1 segment and that located at
the right end of the l3 segment, and the continuities of the displacement
and rotation between the segments. Thus, the expressions of deflection
of the steel core can be obtained as
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the stiffening part, yielding segment and restraining member, respec-
tively. I1, I2 and Ir denote the inertia moments of the stiffening part,
yielding part and restraining member. The coefficients of y2 and y3 can
be expressed as
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where l3 denotes the distance from the contact point to the end of the
stiffening part as shown in Fig. 2. Then the contact force N1 can be
obtained as
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and the fixed-end bending moment of the steel core can be expressed as
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Based on Eq. (12), the maximum bending moment of the restraining
member at the center is obtained as

= +M N l l( )r 1 2 3 (14)

Based on moment equilibrium at the contact point and Eq. (5), the
bending moment of the stiffening part at the end contact point can be
calculated as

= −M M k lcoss f 1 1 (15)

It is seen from the above equation that the fixed-end bending mo-
ment of the steel core, Mf, is always greater than that at the contact
point, so the critical cross-section of the stiffening part is located at the
end of the steel core for fixed-end BRBs, rather than the contact point
for BRBs with hinged ends [21,22].

For hinged-end BRBs, the curvature of the steel core at the central
contact point reaching zero is the critical condition from one contact
point to two contact points [22]. However, for the BRBs with fixed
ends, the curvature at the end of the steel core might also be equal to
zero, therefore it is yet to know whether or not the development of
buckling mode of the steel core herein coincides with that of BRBs with
hinged ends. A numerical example of BRB with fixed ends is given
below to investigate the development of buckling mode on steel core.
Assume a BRB with l=2000mm, lr = 1280mm, ly= 1035mm,
l1= 360mm, l2= 122.5mm, C=2mm, δ0= 0, I1= 435833mm4,
I2= 6667mm4, and E1= E2= 2.1×105N/mm2, and the restraining
member is assumed a rigid body. Based on Eqs. (7), (12), and (13), the
bending moment and curvature at the center of the core and those at
the end of the core are computed and shown in Fig. 3 and Fig. 4, re-
spectively.

Fig. 3 shows that the bending moment and curvature at the center of
the core are always greater than zero in contrast with those of BRBs
with hinged ends [22]. However, as shown in Fig. 4, the bending mo-
ment and curvature at the end of steel core decrease as the axial load
increases, and drop to zero when the axial load reaches 112 kN. This
implies that the development of buckling mode for BRBs with fixed
ends should be different to that with hinged ends.

Fig. 1. Analytical model of BRB with fixed ends.

Fig. 2. Analytical model of BRB with contact force.
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