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A B S T R A C T

In Structural Health Monitoring, non-harmonic periodic hidden covariate typically arises when an observed
structural response depends on unobserved external effects such as temperature or loading. This paper addresses
this challenge by proposing a new extension to Bayesian Dynamic Linear Models (BDLMs) for handling situations
where non-harmonic periodic hidden covariates may influence the observed responses of structures. The po-
tential of the new approach is illustrated on the data recorded on a dam in Canada. A model employing the
proposed approach is compared to another that only uses a superposition of harmonic hidden components
available from the existing BDLMs. The comparative study shows that the proposed approach succeeds in es-
timating hidden covariates and has a better predictive performance than the existing method using a super-
position of harmonic hidden components.

1. Introduction

Structural Health Monitoring (SHM) is a key part in ensuring the long-
term sustainability of our ageing structures. The SHM consists in pro-
viding the structure’s health and conditions during its life service using
instrumentation-based monitoring [1,2]. The measured quantities
being interpreted are commonly displacements and acceleration, that
is, observed structural responses. The important aspect in the SHM is to
early detect changes in the structural behavior by interpreting the ob-
served structural responses in order to provide infrastructure main-
tenance in time. As a matter of fact, the observed structural responses
are commonly dependent on the environmental and operational con-
ditions, i.e. external effects, such as temperature, traffic load, wind, and
humidity [3–5]. In the context of SHM, an unobserved external effect is
defined as a hidden covariate. In most cases, the hidden covariate is
regrouped in two main categories: harmonic and non-harmonic hidden
covariates. Fig. 1a and b present an example of a harmonic signal and of
a non-harmonic signal but periodic, respectively. In the scope of this
paper, we focus on the non-harmonic periodic hidden covariates. Non-
harmonic periodic covariates are common when analyzing the behavior
of structures, for example, the effect of water temperature in the field of
dam engineering [6–8] or the effect of traffic load in the field of bridge
engineering [9]. For the anomalous detection [10–12], a well separa-
tion of the changes due to the external effects and structural behavior is
essential to reduce the false alarms.

The current factor limiting widespread SHM applications is the lack

of generic data-interpretation methods that can be employed at low
cost, for any structures. For the context of SHM applications where data
is acquired periodically over a long time period, Goulet [13] proposed
to address this challenge by building on the work done in the fields of
Machine Learning in what is known as State-Space Models [14], in Ap-
plied Statistics what is known as Bayesian Dynamic Linear Models
(BDLMs) [15–17], and in Control theory in what is known as the
Kalman filter [18]. This methodology consists in employing the BDLMs
to decompose the time series recorded on structures into a set of generic
hidden components, each described by one or more hidden state vari-
ables. The set of available components includes, for example, a local
level component to model the baseline response of structures, a local
trend component to model the rate of change, a periodic component to
model the periodic external effects, an autoregressive component to de-
scribe time-dependent model approximation errors, and a regression
component to include the effect of an observed covariate on the struc-
tural response.

The BDLMs can handle harmonic covariates such as the effect of
temperature on the structural response. Moreover, this can be achieved
whether or not the temperature is observed. However, one limitation of
BDLMs is that it is unable to handle non-harmonic periodic covariates
unless they are directly observed. The requirement that non-harmonic
periodic covariates must be directly observed is a difficult constraint for
SHM applications where the covariates is often non-harmonic yet, ob-
servations are seldom available.

In the field of dam engineering, a common approach employed to
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interpret SHM data is the Hydrostatic-Seasonal-Time (HST) method. This
method has been employed in many case studies [19–22] to interpret
displacement, pressure, and flow-rate observations. The main idea of
HST is to separate the observations into reversible (hydrostatic and
seasonal) and irreversible components. Classic HST formulations cannot
handle the situation where the observations depends on non-harmonic
periodic covariates [8]. Similar methods such as Hydrostatic-Tempera-
ture-Time (HTT) [6,23] and HST-Grad [8] employs directly the observed
external effects such as concrete and water temperatures for addressing
this limitation. When those data are not available, a superposition of
harmonic functions can be employed for building in the non-harmonic
periodic covariates [24]. The limitation is that it requires a large
number of harmonic functions when it comes to the complex non-
harmonic periodic covariates.

Another alternative to HST-Grad is Neural Networks (NN) that have
shown its potential on interpreting the dam-displacement data in sev-
eral applications [25–28]. NN method consists in building the function
that links the displacement to time-dependent covariates such as tem-
perature and water level by a succession of interconnected hidden
layers. However, these methods are typically difficult to interpret and
requires a large amount of data points. To tackle these limitations,
Salazar et al. [29–31] have proposed a novel approach employed
Boosted Regression Trees (BRTs) for analyzing the dam responses.
Moreover, according to the authors the BRTs has better predictive
performance than the HST and NN methods.

Although all above methods can handle non-harmonic periodic
covariates using its data-recorded on the dam, they are limited in
comparison with BDLM because they are based on the theory of linear
regression analysis [32]. Despite having played a key historic role,
linear regression is not up to the state-of-the-art approaches in the field
of machine learning [14,33]. The key limitation of linear regression is
that it does not distinguish between interpolating between observed
data and extrapolating beyond observations. Linear regression is also
known to be sensitive to outliers, prone to overfitting, and unable to
handle auto-correlation which is omnipresent in time-series data [14].

This paper proposes a new extension to the existing BDLMs for
handling situations where hidden non-harmonic periodic covariates
may influence the observed responses of structures. The paper is se-
parated into three main parts. The first part presents a summary of
existing the BDLM formulation. The second part describes the approach
proposed to enable the estimation of hidden non-harmonic periodic
covariates. The final part illustrates the potential of the new approach
on data recorded on a dam located in Canada.

2. Bayesian Dynamic Linear Models

This section presents a summary of the mathematical formulation
employed by Bayesian Dynamic Linear Models (BDLMs) [13]. A BDLM
is defined by its observation and transition equations which are defined
as
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yt is the observations at the time ∈t T(1: ) and xt describes hidden state
variables that they are not directly observed. Observations are modeled
over time as a function of hidden state variables xt, an observation
matrix Ct , and a Gaussian measurement error vt with mean zero and
covariance matrix Rt . The transition of hidden state variables xt be-
tween time steps are defined by the transition matrix At and a Gaussian
model error wt with mean zero and covariance matrix Qt. The main
strength of BDLMs for SHM applications is the capacity to model a
variety number of structural responses from a limited set of generic
hidden components such as basis levels, local trends, periodic compo-
nents and regression components. See Goulet [13] and West & Harrison
[17] for the full description of generic hidden components. In BDLMs,
the hidden state variables xt at a time t are estimated using observations
y t1: and the Kalman filter (KF) algorithm. This algorithm is an iterative
two-steps mathematical process that estimates the posterior mean
vector μt t| and covariance matrix Σt t| so that
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The Kalman filter algorithm uses the Kalman gain Kt to weight the in-
formation coming from observations yt , in comparison with the in-
formation coming from prior knowledge.

The model matrices A C Q R{ , , , }t t t t contain several parameters P that
need to be estimated. A common approach for this task is to employ
Maximum Likelihood Estimation (MLE). Maximum likelihood estimates
are obtained by maximizing the joint prior probability of observations
with the hypothesis that observations y T1: are independent of each
other so that
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For the purpose of improving the numerical stability, one can sum the

Fig. 1. The sine-like signal in (a) is harmonic and can already be handled by the BDLM method whether or not this component is observed. The signal in (b) is not
harmonic. This case can only be handled by the BDLM method if the component is directly observed.
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