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Beam-column joints are one of critical components that control the oveerall performance of reinforced concrete
building frames under seismic loadings. To identify the response mechanism, including the classification of
failure mode and the prediction of associated shear strength, of beam-column joints, this paper introduces the
application of machine learning techniques. The efficiency of various machine learning techniques is evaluated
using extensive experimental data from 536 experimental tests, all of which exhibited either non-ductile joint

shear failure prior to beam yielding or ductile joint shear failure after beam yielding. It has been seen from the
comparison that lasso regression has a better efficiency and reasonable accuracy in the classification and pre-
diction. The suggested formulations as a function of influential input variables can be easily used by structural
engineers to provide an optimal rehabilitation strategy for existing buildings and to design new structures.

1. Introduction

Earthquake reconnaissance studies have highlighted the sig-
nificance of beam-column joint responses on the overall seismic per-
formance of reinforced concrete (RC) frames [1,2]. Under strong
seismic events, beam-column joints, one of key components to maintain
their structural integrity of structural systems, may experience large
deformations and significantly reduce their lateral and gravity load-
carrying capacity, leading to partial damage or global collapse to the
structure. Typically, this lateral instability and collapse have been ob-
served in non-ductile RC frames with inadequate design details. To
explore the main reasons of this non-ductile failure and to evaluate the
seismic performance of these frames, numerous experiments have been
performed for unreinforced joints (no joint transverse reinforcement)
with poor design details [3,4]. Results of these researches resulted in
the requirements for an amount of joint transverse reinforcement and
anchorage in modern building design codes [5-7]. These seismic design
codes have adopted strong column-weak beam philosophy to ensure the
elastic response of joints and the formation of plastic hinges in beams at
large deformations rather than in columns. However, the significant
loss of strength and stiffness has been observed for joints designed on
the basis of the seismic design code requirements [8,9]. In addition,
Shin and LaFave [10] stated that the joint panel zones in modern RC
frames are not essentially rigid, but experience considerable shear de-
formations and strength reductions that contribute greatly to global
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flexibility.

As mentioned above, the inelastic response of beam-column joints is
one of the most critical failure mechanisms influencing the overall
structural performance. Thus, a realistic simulation of the inelastic joint
action in the numerical model of frames is required to more accurately
evaluate the performance of existing structures and design new struc-
tures. Such a reliable estimation depends on capturing an accurate
prediction of the failure mode of beam-column connections and its
associated beam-column joint capacity. However, existing beam-
column joint models used for the probabilistic assessment of frames
[11-13] were developed regardless of failure mode. The failure mode
dependent computational model is very complicated and computa-
tionally intensive due to use of continuum-based finite element models.
To efficiently assess the failure mode classification, Mitra et al. [14]
suggested a binominal logit model to predict the likelihood of joint
failure in RC frames: non-ductile joint shear failure prior to beam
yielding or ductile failure that initiates with beam yielding. The authors
used 110 laboratory tests of interior beam-column joint sub-assem-
blages, and the logit model was a function of the joint design variables
such as nominal joint shear stress demand, average bond stress demand,
the ratio of joint transverse reinforcement strength to joint shear stress
demand, column axial load ratio, and the ratio of beam top to bottom
longitudinal reinforcement strength. However, logit model estimates
often have low bias but large variance, and prediction accuracy can be
sometimes improved by removing some of regression coefficients [15].
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This paper explores the various machine learning techniques such as
logistic, lasso logistic, discriminant, k-nearest neighbors, support vector
machines, decision trees, and random forests to identify the failure
mode of RC beam-column joints. The current study employs an ex-
tensive and comprehensive database consisting of 536 experimental
tests of beam-column joints and uses 12 input variables that may affect
the joint response. To evaluate the relative efficiency of various tech-
niques the data is split into a training set and test set. The training set is
used to establish the classifier and its efficiency is evaluated using the
test set. Although these machine learning techniques have been used
widely in the field of statistics [15-17], the application of machine
learning techniques has not been yet fully explored to the classification
of failure mode for RC beam-column joints and this paper is the initial
step in that direction. Additionally, most of existing studies [13,18]
developed joint shear strength prediction models for all collected data
without classifying the failure mode. However, such an estimation
cannot provide a more reliable basis for the performance evaluation of
structures to design new structures and rehabilitate existing structures
to ensure the ductile behavior of beam-column joints.

Jeon et al. [18] proposed a probabilistic joint shear strength model
using regression techniques such as multivariate adaptive regression
splines (MARS) and symbolic regression. However, the authors have not
identified the failure mode of beam-column joints. This paper further
extends their work through the application of machine learning tech-
niques such as lasso, ridge, elastic net, stepwise, and random forest to
the prediction of beam-column joint capacity depending on the failure
mode. These machine learning techniques perform better compared to
the traditional regressions [15] and recent researches in civil en-
gineering have been exploring the application of these techniques
[18,19].

This research aims to (1) compare the efficiency of various machine
learning techniques in identifying the failure mode (ductile or non-
ductile) and shear strength of beam-column joints with transverse re-
inforcement, (2) suggest an easy-to-use equation to identify the failure-
mode and shear strength as a function of the geometric, material, and
structural properties of beam-column joints, and (3) identify the re-
lative importance of various uncertain input parameters on the shear
strength of beam-column joints. The paper is outlined as follows. The
experimental database is described in detail in Section 2, and the re-
view of various machine learning techniques used for classification and
regression is given in Section 3. The comparison of various machine
learning techniques in estimating the failure mode and joint capacity is
provided in Section. The paper is concluded in Section 5 with the salient
points noted in the current study.

2. Experimental database
2.1. Description of database for RC beam-column joint sub-assemblages

To identify the failure mode of reinforced concrete beam-column
connection sub-assemblages and to develop their failure-related
strength model, this research uses the database consisting of 536 test
specimens. Extensive experimental results on beam-column joints from
various scientific literatures published in USA, Japan, New Zealand,
Europe and Korea are used to construct the database. The database of
516 specimens with transverse reinforcement is reported in Jeon et al.
[18]. The database consists of beam-column joint failures before and
after member (beam or column) yielding during the experiment. Among
the database, 186, 318, and one specimens failed in joint shear prior to
member yielding (J failure mode, hereafter), joint shear after beam
yielding (BJ failure mode, hereafter), and joint shear after column
yielding (CJ failure mode, hereafter), respectively. One specimen ex-
hibiting CJ failure is excluded in this research to assess a reliable esti-
mate of failure mode and associated joint shear strength. Typically, the
response of the sub-assemblages exhibiting J failure is governed by the
joint response (leading to a sudden loss of lateral load-carrying capacity
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Table 1
Experimental database for knee beam-column joints.

First author Specimen Failure mode fe (MPa) 7:6,q,/fc°'5 MPa%®)
Shimonoka [21] L-U J 32.0 0.872
Tabata [22] L-BH1 J 25.6 0.630
L-BH2 J 25.6 0.681
L-BU J 25.6 0.885
McConnell [23] KJS BJ 31.5 0.858
KJ6 BJ 33.0 0.842
KJ7 BJ 329 0.842
KJ8 BJ 36.3 0.658
KJ9 BJ 38.5 0.642
KJ10 BJ 37.9 0.650
KJ11 BJ 35.0 0.700
KJ12 BJ 329 0.717
KJ13 BJ 31.7 0.725
Mazzoni [24] 2-hoop J 42.1 0.656
4-hoop J 42.1 0.664
Choi [25] L1 J 27.2 0.549
L2 J 27.2 0.425
Kramer [26] Joint 4 BJ 34.6 0.493
Megget [27] 1 BJ 27.8 0.486
5 J 33.6 0.415
8 J 40.4 0.400

Note that f, is the compressive strength of concrete and z.,;, is the experimental joint shear
strength.

and thus brittle failure) while the behavior of the sub-assemblages with
BJ failure is controlled by beam yielding (ductile failure). The original
database includes exterior and interior specimens with and without
transverse beams and with and without floor slab. The detailed de-
scription of the specimens can be found in Jeon et al. [18] and Jeon
[20]. In addition to the reported data [18,20], the authors collect 21
additional experimental data for knee-joint types [21-27], as presented
in Table 1. Among these knee connections, 10 and 11 specimens ex-
perienced joint shear failure, respectively, prior to and after beam
yielding. All knee specimens do not have transverse beams. Fig. 1 shows
the constituents of the reinforced beam-column joint sub-assemblage
database (536 specimens = 294 interior + 221 exterior + 21 knee)
used in this research. In the figure, for example, BJ-TBO indicates the
specimens with no transverse beams exhibiting BJ failure and J-TB2
indicates the specimens with two transverse beams exhibiting J failure.

2.2. Brief description of input variables affecting beam-column joint
response

The current study employs the candidate input variables for the
reinforced joint database constructed by Jeon et al. [18], which was
used to develop the joint shear strength models via MARS approach.
These input variables were determined by examining influential vari-
ables affecting the joint response such as joint shear strength, failure
mode, and ductility from the review of existing experimental results,
statistical observations, mechanics theories, and design specifications.
The input variables are 12 such as the concrete compressive strength
(fo), joint transverse reinforcement (p;), design joint shear stress (z4), in-
plane joint geometry (JP), out-of-plane joint geometry (TB), ratio of
beam depth to column depth (hy/h.), joint eccentricity parameter (e.),
ratio of beam width to column width (b,/b.), column axial load ratio
(q), beam-bar bond parameter (y), column-to-beam flexural moment
strength ratio (Mg), and column intermediate longitudinal reinforce-
ment factor (6). Fig. 2 shows the distribution of 12 input variables used
for the reinforced joint database. Because a detailed description of the
input variables was already provided in Jeon et al. [18], the current
study briefly describes the definition of input variables used here. The
joint transverse reinforcement (p;) is defined as the ratio of the area of
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