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a b s t r a c t

Crack-like cohesive defect propagation within a plane orthotropic linear elastic layer is considered by
assuming that the defect, and its growth under load, can be modeled as the evolving separation along
a straight, predetermined nonlinear, nonuniform Needleman-type cohesive interface. The analysis
exploits a general form of orthotropy rescaling originally developed for the displacement boundary value
problem by Krenk (1979). It is shown that when the material is degenerate orthotropic (i.e., q = 1, q is the
orthotropic shear parameter) rescaling enables the determination of solutions from isotropic ones and,
when the material is fully orthotropic, rescaling allows for solutions to be obtained from problems with
the simpler cubic symmetry. (These are well known attributes of linear static sharp crack analysis, which
depend on an alternative form of rescaling the traction boundary value problem (Suo, 1990; Suo et al,
1991).) The procedure is demonstrated by obtaining degenerate orthotropic response from isotropic solu-
tions recently obtained by the authors in an investigation of both solitary as well as multiple cohesive
defect interaction problems in layered systems under arbitrary loading (Nguyen and Levy, 2009, 2011).
In order to obtain fully orthotropic solutions via rescaling, a novel integral equation formulation is devel-
oped based on exact infinitesimal strain elasticity solutions for rectangular domains composed of cubi-
cally symmetric media and subject to arbitrary loading. Explicit results are obtained for the simple
edge notch bend configuration, chosen so as to shed light on the mechanisms of defect propagation in
orthotropic layers. It is demonstrated that increasing the orthotropic stiffness ratio can precipitate a
quasi-brittle defect growth response. Furthermore, it is well known that in a number of technically
important problem geometries and loadings, static sharp crack solutions are only weakly dependent
on shear parameter q enabling the estimation of fully orthotropic behavior from isotropic solutions
(Suo et al, 1991). This result is shown to be true for nonlinear cohesive fracture analysis of the edge notch
bend configuration analyzed in this study.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to extend an exact theory of nonlin-
ear cohesive fracture of isotropic planar layers (Nguyen and Levy,
2009, 2011) to the realm of orthotropic elasticity. The technical sig-
nificance of the work stems from the widespread use of composite
layers, at least one of which is anisotropic, in adhesive and protec-
tive coatings (Chvedov and Jones, 2004; Graziano, 2000; Boelen
et al. 2004), in dental restorations consisting of ceramic, ceramic
filled polymer and cementitious layers (Niu et al, 2008) and in
the rehabilitation of structures where fiber reinforced plastic plate
is adhered to damaged concrete beams (Carpinteri et al, 2007;
Wang, 2007; Au and Buyukozturk, 2006; Pan and Leung, 2007;
Rabinovitch, 2008). Numerous other applications exist as well.
The subject of this paper is cohesive fracture within a single
orthotropic layer exclusively, while future work will address the

heterogeneous multilayer cohesive interface fracture problem.
The present analysis requires a straight nonlinear, nonuniform
cohesive interface, along which a crack-like defect1 will evolve, to
be preselected to reside between two materially identical orthotro-
pic sub-layers. Note that by nonlinear, nonuniform cohesive inter-
face we mean an interface characterized by a traction-separation/
slip relation that is a vector valued expression generally dependent
on an interface coordinate dependent displacement jump vector
and explicitly dependent on the interface coordinate through the
interface strength. A well known example is the nonlinear exponen-
tial force law (Ferrante et al., 1982), which concerns normal separa-
tion only; given by sðn; mÞ ¼ ermax

m
d e�m=dn where s is the traction

vector on a side of the interface with unit normal n and v is the
(normalized) normal component of displacement jump across the
interface, generally dependent on an interface coordinate. The
interface constitutive quantities rmax, d characterize the interface
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strength and the dimensionless force length, respectively. Interface
nonuniformities including crack-like defects are considered by
allowing the interface strength to be a function of interface coordi-
nate x, i.e., rmax(x) (Needleman, 1990a; Needleman 1990b).

The approach taken here for the analysis of the orthotropic
cohesive fracture problem is similar in some respects to one that
is used in the well developed theory of static sharp cracks in plane
rectangular anisotropic media in general, and orthotropic media in
particular. In these problems, stress intensity factors for straight
cracks in a variety of geometrical and loading configurations can
be obtained by means of orthotropy rescaling of the governing
orthotropic elasticity equations resulting in problems with cubic
symmetry or, isotropic symmetry (provided the unscaled problem
is degenerate orthotropic, i.e., q = 1, q is the orthotropic shear
parameter (Suo, 1990; Suo et al, 1991)). The argument follows that,
because many problems of technical interest have been solved for
the simpler symmetry classes, their solutions can be exploited to
yield the desired fully orthotropic (or degenerate orthotropic) solu-
tions without much additional effort. Although the essence of the
nonlinear cohesive fracture problem is fundamentally different
from that of the linear static sharp crack, the overall philosophy
employed here is the same as that used in Suo (1990), Suo et al
(1991) to treat sharp cracks, i.e., to employ a rescaling of the equa-
tions to extract solutions for orthotropic media from isotropic or
cubic media. Because the cohesive fracture problem, in contrast
to the sharp crack problem, involves a nonlinear displacement
boundary condition, the general form of rescaling introduced by
Krenk (1979) will be employed. For problems with degenerate
orthotropy, it is shown that rescaling reduces the problem to iso-
tropic symmetry while fully orthotropic problems are reduced to
problems with cubic symmetry. In the former case, isotropic solu-
tions obtained by Nguyen and Levy (2009, 2011) are used to di-
rectly obtain orthotropic response via rescaling. In the later case
an exact methodology, based on elasticity solutions for problems
of cubic symmetry, is developed for loading consisting of pointwise
prescribed strong boundary conditions on the upper and lower
layer surfaces, and resultant prescribed weak boundary conditions
on the side surfaces. This system models cohesive fracture in a sin-
gle layer under a wide range of loading conditions. In particular,
the stress function equation is solved in two sub layers adhered
to each other along a cohesive interface and exact elasticity solu-
tions for the boundary displacement components are written for
each sub-layer. These are then pieced together to form integral
equations governing displacement discontinuity components nor-
mal and tangent to the interface. The equations are necessarily
nonlinear owing to nonlinear interface traction-separation/slip
relations required to characterize the interface. The solution pro-
cess proceeds by using eigenfunction expansion methods to reduce
the integral equations to an infinite set of nonlinear algebraic
equations which are then truncated and solved numerically.

In the next section (Section 2) orthotropy rescaling of the elas-
ticity equations is discussed and extended to include the nonlinear
cohesive interface boundary condition. Two problems involving
degenerate orthotropic media are then solved by a rescaling of iso-
tropic solutions obtained previously by the authors (Nguyen and
Levy, 2009, 2011). The first problem deals with a cohesive defect
(nonuniformity in interface strength) in a layer for which there is
symmetry about the defect line (Fig. 1), while the second deals
with a problem of stability of interfacial separation in a trilayer
system (Fig. 5). Because fully orthotropic solutions can be obtained
from cubic symmetry solutions, Section 3 presents an exact general
theory of nonlinear cohesive defect growth in a layer composed of
cubically symmetric media. Explicit results, including a discussion
of the issue of q dependence, are presented for an edge notch bend
configuration. The section closes with a demonstration of the
remarkable fact that, for this configuration, increasing the

orthotropic stiffness ratio can precipitate a transition from more
or less ductile defect growth to a quasi-brittle type of response
characterized by an abrupt jump in defect length. The final section
(Section 4) summarizes the findings and suggests further exten-
sions of the work.

2. Orthotropy rescaling; degenerate orthotropic solutions

2.1. Displacement boundary value problem

Hooke’s law for plane orthotropic linear elastic media assumes
the form (Lekhnitskii, 1981),

ei ¼ bijtj; i; j ¼ 1;2;6 ð1Þ

where the strain components ei, i = 1, 2, 6 are given in terms of the
strain tensor components by [e1, e2, e6]T = [exx, eyy, 2exy]T and the
stress components ti, i = 1, 2, 6 are given in terms of the stress ten-
sor components by [t1, t2, t6]T = [rxx, ryy, rxy]T. The coefficients bij,
i, j = 1, 2, 6 have different forms depending on whether one is deal-
ing with plane strain or plane stress. The coefficients bij, i, j = 1, 2, 6
have different forms depending on whether one is dealing with
plane strain or plane stress. Thus, if bij = aij, i, j = 1, 2, 6 are plane
stress components, then the plane strain components are given by
bij = aij � ai3aj3/a33, i, j = 1, 2, 6. In terms of engineering moduli the
aij are defined by, a11 = 1/E1, a22 = 1/E2, a12 = �t21/E2, a21 = �t12/
E1, a66 = 1/G and a13 = �t31/E3, a23 = �t32/E3, a33 = 1/E3 with
a12 = a21 = �t21/E2 = �t12/E1 (all other coefficients zero). The quan-
tities (E1, E2, E3) are stiffnesses, G is the in-plane shear modulus, and
(t12, t21, t13, t31, t23, t32) are Poisson ratios, i.e., tij characterizes the
contraction in the j direction due to an extension in the i direction.
There are four independent constants, i.e., five constants (b11, b22, -
b12, b21, b66) connected by one constraint b12 = b21. Following Krenk
(1979) introduce quantities valid for both plane stress and plane
strain: the effective stiffness E, the effective Poisson ratio t, the shear
parameter q and the stiffness ratio k,2

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b11b22

�1
p

; t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b12b21

b11b22

s
; q ¼ 1

2
2b12 þ b66ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b11b22

p ; k ¼ b11

b22
ð2Þ

It is well known that, for rectilinear anisotropic media, the equi-
librium equations will be satisfied when the stress components are

written in the form rxx ¼ @2u
@y2 ; ryy ¼ @2u

@x2 ; rxy ¼ � @2u
@x@y and the com-

patibility equations will be satisfied when the stress function u

satisfies the differential equation @4u
@x4 þ 2qk1=2 @4u

@x2@y2 þ k @4u
@y4 ¼ 0

where k;q are defined above (Lekhnitskii, 1981).
If a change of variables3 (Krenk, 1979) is introduced according to,

x̂ ¼ k1=8x; ŷ ¼ k�1=8y; ûx ¼ k�1=8ux; ûy ¼ k1=8uy;

êxx ¼ k�1=4exx; êyy ¼ k1=4eyy; êxy ¼ exy;

r̂xx ¼ k1=4rxx; r̂yy ¼ k�1=4ryy; r̂xy ¼ rxy;

ð3Þ

then the following standard relationships are true,

r̂xx ¼
@2û
@ŷ2 ; r̂yy ¼

@2û
@x̂2 ; r̂xy ¼ �

@2û
@x̂@ŷ

;

êxx ¼
@ûx

@x̂
; êyy ¼

@ûy

@ŷ
; 2êxy ¼

@ûy

@x̂
þ @ûx

@ŷ
:

ð4Þ

The stress function û now satisfies the rescaled equation,

@4û
@x̂4 þ 2q

@4û
@x̂2@ŷ2 þ

@4û
@ŷ4 ¼ 0; ð5Þ

2 For many materials of interest 0 < q < 5, 1/20 < k < 20 (Bao et al, 1992).
3 In what follows a caret will designate a scaled variable.
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