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A B S T R A C T

We introduce a systematic approach for analyzing the energy consumption of four control policies (i.e., zone
level daily optimal control, zone level annual optimal control, building level daily optimal control, building level
annual optimal control), which differed based on their temporal and spatial control scales. In order to integrate
occupant thermal comfort requirements, we defined uniformly distributed random constraint functions on the
setpoints. We used the DOE reference small office building in three U.S. climate zones for simulating the per-
formances of control policies, using EnergyPlus. Among the four control policies, the building level annual
control policy showed close to the highest energy efficiency (27.76–50.91% (average of 39.81%) savings de-
pending on the climate) with comparatively small training data requirements. In addition, the building level
daily optimal setpoint selection, subject to thermal comfort constraints, leads to 17.64–38.37% (average of
26.61%) energy savings depending on the climate. We also demonstrate that temporal scale of the policies have
a statistically significant impact on the small office building's energy consumption while spatial scale's impact is
insignificant.

1. Introduction

Commercial and residential buildings account for approximately
30% of the total energy consumption in the world and contribute
substantially to the climate change, i.e., 30% of the global greenhouse
gas emissions [1]. This share is larger (about 40% of the total energy
consumption [2]) in the developed countries. The growth in the po-
pulation, the increasing demand for better building services and im-
proved comfort, in addition to the rise in the time spent in buildings,
result in an ever increasing building energy consumption [3]. HVAC
systems, which are responsible for providing comfortable thermal
conditions and acceptable air quality in buildings, account for the lar-
gest share in energy usage and gas emissions (about 50% of the con-
sumption in the developed countries [3]).

Majority of the HVAC system controllers work with a negative
feedback control loop based on indoor air temperature [4,5]. In this
control logic, the error between a target state (i.e., a temperature set-
point) and the feedback (i.e., a thermostat reading) should not exceed a
threshold (i.e., deadband). HVAC systems often use fixed control
parameters in compliance with the standards (e.g., ASHRAE Standard
55 [6], ASHRAE Standard 62.1 [7]), which assume thermal comfort is
static over time. However, it has been shown that dynamic

environmental variables (e.g., outside temperature [8]) and user re-
lated variables (e.g., physical acclimation [9]) influence thermal com-
fort, making it dynamic over time [10–13]. For example, occupants
prefer higher setpoints in the summer compared to the winter [11], and
buildings also consume less energy at higher setpoints in the summer
compared to the winter. Therefore, smart selection of higher setpoints
in the summer and lower setpoints in the winter provide an opportunity
to not only conserve energy, but also improve thermal comfort. How-
ever, it is important to note that the highest or lowest setpoints are not
always the most energy efficient setpoints [14,15].

In a previous study, we demonstrated that a control policy that
selects optimal setpoints on a daily basis with a fixed spatial scale (i.e.,
one setpoint for the entire building) considerably reduces the energy
consumption compared to a control policy that selects an optimal set-
point on an annual scale [14]. The savings ranged from 6.78% to
37.03% depending on the climate and building size with an average of
16.4%. However, consideration of the impact of other factors on HVAC
performance, such as the internal heat exchange between the zones,
might provide opportunities to optimally select zone level optimal
control parameters to improve the energy efficiency at the building
level. Therefore, a control policy that optimizes the HVAC performance
on a daily basis at the zone level could potentially improve the overall
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building energy efficiency. In addition, imposing thermal comfort
constraints on the selection of the optimal control parameter selection
impacts the effectiveness of the control policies. Understanding the
impacts of spatial (i.e., building level and zone level) and temporal (i.e.,
annual and daily) scales of the controllers on the overall HVAC system
energy consumption under thermal comfort constraints is the primary
gap explored in this paper.

Thus, we introduce a systematic approach for analyzing four control
policies, which differ based on their temporal and spatial scales: (1)
building level annual optimal control policy, (2) zone level annual
optimal control policy, (3) building level daily optimal control policy
(introduced and validated in a previous study [14]), and (4) zone level
daily optimal control policy. The first and the third control policies
assign optimal control parameters at the building level, while the
second and fourth operate at the zone level. Therefore, the focus of this
study is to compare optimization of a single value for a cluster of set-
points with multiple values for setpoints. The first and second control
policies select optimal parameters on an annual basis, while the third
and fourth policies select optimal parameters on a daily basis. In order
to represent the impact of personal comfort on these control policies,
we used a uniformly distributed noise generating function to simulate
occupants comfort and constraint the optimal control parameters and
compared the energy consumption of these control policies with each
other. We used the small size office building reference simulation model
developed by the Department of Energy (DOE) [16] for comparing the
four control policies in three United States climate zones.

The paper is organized as follows. A review of the recent studies on
optimal controllers and control policies for comfort driven HVAC op-
erations is presented in Section 2. We explain the design and im-
plementation of the four control policies, discretization of the simula-
tion factors, and data analysis in Section 3. We present the energy
simulation models and procedures in Section 4. Section 5 provides the
results of the comparison of the four control policies. Limitations on the
generalization of the findings and future steps of the research are pre-
sented in Section 6. Finally, Section 7 provides a summary of the results
and conclusions of the paper.

2. Literature review

An HVAC thermal zone level controller operates based on two
control parameters defined as a setpoint (target value) and deadband
(performance relaxation range around the setpoint). The higher value
on the deadband is referred to as the cooling setpoint and the lower
value on the deadband is referred to as the heating setpoint. Extending
both heating and cooling setpoints increases the deadband. Since it is
well known that maximizing the deadband always results in energy
efficiency because it increases the no-operation margin around the
setpoint, this paper focuses on the smart selection of setpoints rather
than the impact of increasing the deadband.

Control policies for optimizing HVAC setpoints can be divided into
two categories: (1) control policies that are complementary to the ex-
isting HVAC control logic and that influence the performance of HVAC
systems by solely adjusting the indoor air temperature setpoints
[14,17,18], and (2) operational policies that intervene existing HVAC
control logics (e.g., order, condition, and loop) and that require the
dynamic control of local subsystems [19]. In this paper, we focus on the
techniques in the first category due to the fact that these techniques
could be easily generalized, they work for any type of HVAC system and
do not require a model of an HVAC system (making them model free).
However, optimizing the operation of HVAC systems solely for setpoints
might result in thermally uncomfortable conditions for building occu-
pants. For example, an occupant might prefer a cool environment while
the optimal control parameters result in a much warmer thermal en-
vironment than the desired level. Therefore, we also narrowed down
our review to the techniques that allow for integration of dynamic
personal thermal comfort requirements into HVAC control loop.

Researchers have proposed various personalized and real-time
comfort sensing approaches, which can potentially be used in existing
buildings. A model predictive control (MPC) optimization environment,
introduced in [20], couples the environment to a building automation
system, allowing real-time optimization, considering operator overrides
and updated weather forecasts to predict optimal building control
strategies. Through determining hourly HVAC cooling setpoints and
supply water temperature for minimizing the daily energy cost, 5–54%
energy savings and improvement in occupants’ comfort were achieved.
The setpoints were fixed across the building systems and only varied
over time (i.e., temporal scale). Authors of [17] developed a multi-
objective genetic algorithm for optimizing a building's mechanical
systems performance. The optimization algorithm operates com-
plementary to a building's central control system. The optimization
process strives to maximize energy efficiency and thermal comfort by
searching the supervisory control strategy setpoints, such as supply air
temperature, supply duct static pressure, chilled water supply tem-
perature, minimum outdoor ventilation, reheat (or zone supply air
temperature). HVAC system steady-state models, developed and vali-
dated against the monitored data of the existing VAV system, were used
for energy use and thermal comfort calculations. Comparing actual and
optimal energy use, the authors demonstrated that the proposed control
strategy could save energy by 16% for two summer months while sa-
tisfying minimum zone airflow rates and zone thermal comfort. It was
then concluded that the proposed control strategy with required con-
straints could improve the operating performance of the existing HVAC
system. Similar to the previous study, the setpoints were uniform across
building for each subsystem and it solely varied over time (i.e., tem-
poral scale). A methodology for optimizing building supervisory control
in simulation has been introduced in [21]. Their stochastic model
predictive control (SMPC) architecture is capable of incorporating dif-
ferent levels of variability in building performance due to occupant
behavior and provided control setpoints which lead to more con-
servative building performance. A set of time windows enabled the use
of complex building models in energy simulations. The case study re-
sults showed that stochastic optimization led to a more conservative
and more reliable 33% performance improvement compared to the 50%
performance improvement of deterministic optimization. Similar to two
previous studies, the setpoints were uniform across the building for
each subsystem and it solely varied over time (i.e., temporal scale).
Authors in [22], applied computational intelligence algorithms to solve
the non-parametric model for minimization of HVAC energy con-
sumption and room temperature ramp rate Through real-world im-
plementation of the methods, their results indicated that particle swarm
optimization and harmony search algorithms are suitable for solving
the proposed optimization model. The computational results demon-
strated that energy savings could be achieved by optimizing the settings
for the supply air static pressure set point and discharged air tem-
perature set point on a temporal scale. Authors in [23] applied a novel
control method using multi-dimensional interpolation between opti-
mized control configurations for various steady-state load distributions
on a system with arbitrary steady-state and transient load distributions.
Applying the method on a two-room HVAC system predicts power
savings for an arbitrary steady load that is nearly equivalent to that
using a Variable-Air-Volume air condition system with chiller mod-
ulation. However, the new method provides 19% energy savings over
an uncontrolled system compared to energy savings of 6% for a VAV
with chiller modulation for arbitrary transient loads. This method ap-
plied the control strategy mainly on a spatial scale and did not consider
the implications of temporal scale.

Although extensive research has been conducted to improve HVAC
system energy efficiency through customizing the control of setpoints
based on comfort requirements, all of the above mentioned studies have
focused either on the temporal control scale or on the spatial control
scale– not on both temporal and spatial control scales simultaneously
[24]. Understanding the impacts of both temporal and spatial scales in
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