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a b s t r a c t

In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one

dimensional structured solids by application of the so called Inertia Gradient Nonlinear con-

tinuum model. To show the accuracy of this axiomatic model, previously proposed by the

authors, its predictions are compared with numeric results from a previously defined finite

discrete chain of lumped masses and springs, for several number of particles. A continualiza-

tion of the discrete model equations based on Taylor series allowed us to set equivalent values

of the mechanical properties in both discrete and axiomatic continuum models. Contrary to

the classical continuum model, the inertia gradient nonlinear continuum model used herein

is able to capture scale effects, which arise for modes in which the wavelength is compara-

ble to the characteristic distance of the structured solid. The main conclusion of the work is

that the proposed generalized continuum model captures the scale effects in both linear and

nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, the scientific community has paid attention to micro- and nano-structured materials, such as micro-

or nano-electromechanical (MEMS or NEMS) devices [1,2], nanomachines [3–6], as well as in biotechnology and biomedical

fields [7–10]. For this reason, there is high technological and scientific interest in the development of a powerful tool for the

design of these solids. It is well known that matter is essentially discrete. Therefore, atomistic and molecular dynamic formu-

lations have been used to understand solids behavior. Discrete models and Molecular Dynamics approaches constitute well-

known tools to simulate the behavior of microstructured materials and nano-scale elements. However, this calculations are

time consuming, even for a relatively low number of particles, if the interaction between them is complex. On the other side,

classical continuum models may not capture relevant effects inherent to the microstructure, such as dispersive propagation of

waves, size-dependent structural behavior, beaming effect, etc. That is because the classical continuum approach is a scale-free

theory.

In contrast, some generalized continuum models have been developed by researchers in this field in order to capture

the size effects in the dynamic behavior of microstructured materials. Since the 19th century (works by Cauchy and Voigt),

and in the beginning of the 20th century (works by Cosserat brothers) it is possible to find some attempts to capture the

effects of microstructure using the continuum equations of elasticity with additional higher-order derivatives. The 1960s

supposed a great boost of the topic with the works of Mindlin and Tiersten [11], Kröner [12], Toupin [13,14], or Green

* Corresponding author.
E-mail address: javier.vila@aerospace.gatech.edu (J. Vila).

https://doi.org/10.1016/j.jsv.2018.01.040

0022-460X/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jsv.2018.01.040
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/jsvi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2018.01.040&domain=pdf
mailto:javier.vila@aerospace.gatech.edu
https://doi.org/10.1016/j.jsv.2018.01.040


297J. Vila et al. / Journal of Sound and Vibration 420 (2018) 296–314

and Rivlin [15]. Several studies have been developed in recent years by making use of strain gradient models, applying its

formulation to solve the behavior of nano-shells [16,17], micro and nanoplates [18–21], CNT reinforced elements [22,23],

CNTs [24], nano and micro-beams [25–28], micro-pipes [29], among others. Following a different approach, Eringen postu-

lated [30,31] an integral nonlocal constitutive relation for microstructured materials. From this earlier nonlocal theories, he

derived a differential version which contains only one additional length scale parameter [32]. This model has been widely

used to address different kind of problems related to the mechanical behavior of nanostructures [33–35]. However, several

authors have pointed out some inconsistencies arising from the Eringen differential model, both in the static [36–41] and

the dynamic regime [42] of nonlocal beams and rods. Recently, Romano et al. [43] showed that, in the majority of cases,

the integral formulation of the fully nonlocal elasticity theory of Eringen leads to problems that have to be considered as

ill-posed.

All the above works assumed a linear relation between strains and displacements (infinitesimal deformations frame-

work). However, there exist nonlinear solids with an inherent microstructure such as live tissues, highly deformable rubber

lattices and other organic compounds that exhibit significant nonlinearities under elastic deformations. In addition, nano-

materials and nanostructures (graphene, CNTs, etc.) can be manufactured with a very low amount of defects, which pre-

vents their collapse under high loads, allowing high deformations and leading to remarkable nonlinear behavior. Nonlin-

ear microstructured materials have a large amount of potential applications in tunable devices [44,45], since the proper-

ties of these microstructured solids may be controlled by the amplitude of the phonons propagating through them. There-

fore, they could be used for manufacturing non-conventional filters and wave selectors. Nevertheless, only a few attempts

have been done up to date to study large strains and rotations (see Dai et al. [46], Karparvarfard et al. [47], Gholipour et

al. [48], Andrianov et al. [49], Pal et al. [50] and Dell’Isola et al. [51]). In this respect, Reddy considered [52] the nonlin-

ear von Kármán strains in the analysis of nonlocal formulation of bending of beams and plates under the assumptions of

small strains and moderate rotations. Subsequently, this theory has been applied to study the large amplitude free vibra-

tion of nanobeams by Şimşek [53,54]. In these works a general formulation of the Eringen nonlocal theory of elasticity valid

for finite deformations is not given. However, the Eringen model present the inconsistencies and limitations mentioned

above.

In this paper we study the axial-transverse coupled nonlinear vibrations of a kind of one dimensional structured solids,

defined as a discrete chain of masses interacting through linear springs, in which size effects play a major role. The paper is

organized as follow: in Sec. 2 the discrete model is formulated. The continualization of the governing equations of this discrete

model using Taylor series expansion method is presented, showing that it is possible to recover the classical continuous von

Kármán beam equations. In Sec. 4, the Inertia Gradient Nonlinear generalized continuum model (IGN), previously postulated by

the authors [55], is applied to the analysis of the axial-transverse vibrations of the von Kármán beams (i.e. considering small

displacements and moderate rotations). A comparison between results of the discrete model and the predictions of the both

generalized continuum one, as well as the classical nonlinear beam model, is given in Sec. 6. We want to remark that this

comparison between solutions of a proposed generalized continuum model and a discrete one is not common in the literature.

Finally, the main conclusions of the work are presented in Sec. 7.

2. Formulation of a nonlinear discrete beam

In order to study the dynamic behavior of a nonlinear microstructured one dimensional discrete system, a 1-D lattice model

is formulated. It consists of P particles equally spaced at distance d with two degrees of freedom in the in-plane motion. Each

particle has the same mass m. Particles are joined to first neighbors by longitudinal linear elastic springs, which in turn are

coupled by linear elastic torsional springs. A sketch of the chain is shown in Fig. 1. Horizontal and vertical displacements of the

nth particle from the free equilibrium position are named un and vn, and 𝜃n is the angle of the nth longitudinal spring with its

original position.

Fig. 1. Sketch of discrete model.
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