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A B S T R A C T

This paper presents the computational reconstruction of a three-dimensional distribution of time-averaged
pressure of a large-scale tornado-like vortex based on measurement data of time-series velocities. The large-
scale tornado simulation facility of Texas Tech University, known as VorTECH, was used to acquire the time-
series velocities over a cross-section through the apparatus center as well as the time-series pressure on the
floor. The three-dimensional pressure was numerically retrieved using a solution of the pressure Poisson equation
discretized by finite element approximation while taking into consideration the effect of turbulence on the
pressure in terms of the Reynolds stress. The computed pressure distribution near the floor was validated using
the measured floor pressure. The effect of turbulence was found to be significant when attempting to accurately
compute pressures using turbulent flow data. Furthermore, it was shown that the computer code is capable of
assimilating a measured flow field into the divergence-free field by determining the stationary solution of a
functional using the Lagrange multiplier. It was found that the effect of assimilation on the retrieved pressure is
not significant.

1. Introduction

A tornado could have a significant impact on buildings and structures
not only owing to its wind load but also its pressure difference load. A
simple vortex model such as the Rankine vortex model has often been
used to conservatively estimate the maximum pressure deficit in struc-
tural design; however, real tornadoes have a three-dimensional pressure
distribution. Actual pressure distributions of tornadoes have only been
obtained at locations near the ground, most of which were coincidentally
recorded at weather stations or barometers over which or near which
tornadoes had happened to pass. Such records are listed in Table 16.3 of
Davies-Jones and Kessler (1974). Moreover, Karstens et al. (2010) suc-
cessfully determined nine near-ground pressure profiles of tornadoes
from 2002 to 2008 using Hardened In-Situ Tornado Pressure Recorder
probes. Hoecker (1961) derived a three-dimensional axisymmetric
pressure distribution of the Dallas tornado at a distance from the ground
in 1957 using a tangential speed distribution from still frames in videos
and the cyclostrophic wind equation (balance of radial pressure gradient
and centrifugal force). With the advent of particle image velocimetry

(PIV) and modern computer technologies, more sophisticated re-
constructions of an instantaneous pressure field have been rigorously
attempted (van Oudheusden, 2013; van Gent et al., 2017). Recently, the
PIV technique has been extensively employed in measuring flow field of a
tornado-like vortex. For example, Hashemi Tari et al. (2010) successfully
acquired characteristic quantities of turbulence of a rather small-scale
tornado-like vortex. Application of PIV to a large-scale tornado-like
vortex has also been accomplished using a 1/11 model of a new facility
known as WindEEE (Refan and Hangan, 2016). However, the PIV-based
measurement is usually limited to rather small-scale flow fields, which
impede application to large-scale experiments and actual tornadoes. The
aforementioned issues have prevented us from deriving the
three-dimensional pressure distribution of large-scale tornado-like
vortices, and, consequently, that of actual tornadoes as well.

In this study, the authors have presented a three-dimensional distri-
bution of the time-averaged pressure of a large-scale tornado-like vortex.
The pressure has been computationally derived from time-series velocity
data measured in the vertical cross-section of a quasi-steady vortex
generated in the VorTECH facility of Texas Tech University, USA. The
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computer code employed in this study was developed by Central
Research Institute of Electric Power Industry (CRIEPI), Japan (Eguchi
et al., 2014). The computation is based on the pressure Poisson equation,
which can be derived from the continuity and momentum equations, as
has often been done in previous studies (Gresho and Sani, 1987; Sani
et al., 2006; van Oudheusden, 2013). The code can also be used to correct
a measured flow field such that it strictly satisfies the divergence-free
constraint or mass conservation law for incompressible fluids. The code
is formulated by only implementing the equations in a three-dimensional
Cartesian co-ordinate system, whereas the axisymmetric cylindrical
co-ordinate system is ignored. The unique feature of the present study is
that it takes the effect of turbulence on the pressure into consideration in
the pressure retrieval. The reason is because the turbulence could have an
impact on the pressure, as demonstrated in the static-pressure measure-
ments performed by Miller and Comings (1957) in the case of the free
turbulent jet.

In the following section 2, we present the theoretical background
regarding an assimilationmethod, with whichmeasured velocities can be
projected onto a divergence-free velocity field. Furthermore, it is
explained how the time-averaged pressure can be computed using both
the time-averaged velocity field and turbulence quantities, i.e., the Rey-
nolds stress. In section 3, we describe the experimental facility as well as
the measurement methods used for obtaining the time-series velocity and
floor pressure in a large-scale tornado-like vortex. In section 4, we pre-
sent the computational results of the projected velocity field and
computed pressure field. In section 5, we discuss the effect of turbulence
on the pressure while comparing the computed near-floor pressure with
the measured floor pressure. The final section presents the conclusion.

2. Theoretical background

2.1. Wind field assimilation method

When a velocity field vexp obtained in a measurement does not satisfy
the continuity equation or divergence-free constraint, we can obtain the
divergence-free velocity field v by determining the stationary point of the
following functional F(v,λ), as pioneered by Sani et al. (1978) and as
explained by Gresho and Sani (2000).

Fðv; λÞ ¼ 1
2
∫
Ω

��v� vexp

��2dΩ� ∫
Ω
λr⋅vdΩ (1)

where λ is a Lagrange multiplier, and Ω is a fluid domain. At the sta-
tionary point, the first variation δF should be zero.

δF ¼ Fðvþ δv; λþ δλÞ � Fðv; λÞ
� ∫ Ω

�
v� vexp

�
⋅δvdΩ� ∫ Ωλr⋅δvdΩ� ∫ Ωδλr⋅vdΩ

¼ ∫
Ω

�
v� vexp þrλ

�
⋅δvdΩ� ∫

Γ
λδvdΓ � ∫

Ω
δλr⋅vdΩ ¼ 0

(2)

where Γ is the entire surface of a fluid domain. The above equation and
the arbitrariness of the variations δv and δλ result in the following
Euler–Lagrange equations.

v� vexp þrλ ¼ 0 in Ω (3)

r⋅v ¼ 0 in Ω (4)

λ ¼ 0 on Γ (5)

To numerically compute the divergence-free velocity field v, we
employ a three-dimensional finite element approximation with eight-
node hexahedron isoparametric elements. The velocity and the
Lagrange multiplier are respectively interpolated using tri-linear func-
tions Φα with respect to node α and piecewise constant functions, along
with a stabilization technique (Hughes and Franca, 1987; Eguchi, 2003).
The conventional Galerkin formulation for Eqs. (3) and (4) allows us to
obtain spatially discretized linear systems for the unknown nodal

velocity vector {V} and Lagrange multiplier vector {Λ} with the known
velocity vector {Vexp} as shown below.

½M�fVg � ½M��Vexp
�� ½C�fΛg ¼ f0g (6)

½C�TfVg ¼ f0g (7)

The boundary condition of Eq. (5) is implicitly embedded in Eq. (6) as
a natural boundary condition. The matrices [M] and [C] denote the mass
matrix and gradient matrix, which are composed of the element matrices
[Me] and [Ce], respectively, as follows.

½Me� ¼ ∫
ΩeΦαΦβdΩ (8)

½Ce� ¼
�
∫
Ωe

∂Φα

∂x dΩ ∫
Ωe

∂Φα
∂y dΩ ∫

Ωe
∂Φα
∂z dΩ

�T
(9)

where the subscripts α and β indicate the local nodal number ranging
from 1 to 8, while Ωe is the domain of element e. On eliminating V from
Eqs. (6) and (7), the following discrete Poisson equation is obtained.

½C�T½M��1½C�fΛg þ κ½J�fΛg ¼ �½C�T�Vexp
�

(10)

As shown above, a diagonal lumped mass matrix [M] is used instead
of [M] to reduce the computational effort and memory storage require-
ment. Furthermore, the second term along with a non-dimensional con-
stant, κ, is specifically used to suppress the numerical instability inherent
to the present finite element approximation by using tri-linear functions
for the velocity and piecewise constant functions for the Lagrange
multiplier. The element vector with respect to the element e, κ([J]{Λ})e,
can be expressed as:

κð½J�fΛgÞe ¼ κ
b2

"XMe

i¼1

�
Λeð0Þ � ΛeðiÞ�S3

2
eðiÞ

#
(11)

where b is an average mesh size, and Me is the number of interior inter-
element faces of the element e, Se(i) is the contact area of the i-th inter-
element face of element e, Λe(0) is the Lagrange multiplier of element e,
and Λe(i) is the Lagrange multiplier of the i-th element contacting element
e. The linear system of Eq. (10) is solved using a commercial matrix
solver, SAMG, developed by the Fraunhofer Institute, Germany. On
substituting the solution {Λ} into the following equation, we obtain the
divergence-free velocity {V}.

fVg ¼ �Vexp
�þ ½M��1½C�fΛg (12)

2.2. Pressure retrieval method

We assume that the time-series velocities are available throughout the
fluid domain via measurements. The divergence-free counterpart of the
time-averaged velocities can also be obtained using the aforementioned
method. The pressure retrieval method employed is based on the un-
steady three-dimensional incompressible Navier–Stokes equations and
the incompressibility constraint below.

∂u
∂t ¼ �ðu⋅rÞu�rpþ νr2u in Ω (13)

r⋅
∂u
∂t ¼ 0 in Ω (14)

where u and p respectively denote the velocity and kinematic pressure
(pressure divided by fluid density), while t and ν respectively represent
the time and kinematic viscosity. The above equations are supplemented
with a velocity boundary condition because the velocity values are
available over the entire fluid boundary Γ as well as in the entire fluid
domain Ω.
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