Accepted Manuscript

Conversion Efficiency Gain for Concentrated Triple-Junction Solar Cell System through Thermal Management

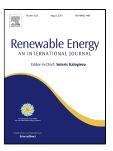
Dianhong Li, Yimin Xuan, Ershuai Yin, Qiang Li

PII: S0960-1481(18)30435-X

DOI: 10.1016/j.renene.2018.04.027

Reference: RENE 9985

To appear in: Renewable Energy


Received Date: 26 December 2017

Revised Date: 15 March 2018

Accepted Date: 08 April 2018

Please cite this article as: Dianhong Li, Yimin Xuan, Ershuai Yin, Qiang Li, Conversion Efficiency Gain for Concentrated Triple-Junction Solar Cell System through Thermal Management, *Renewable Energy* (2018), doi: 10.1016/j.renene.2018.04.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Conversion Efficiency Gain for Concentrated Triple-Junction Solar

2	Cell System through Thermal Management
3	Dianhong Li ^{a,} Yimin Xuan ^{a, b,*} , Ershuai Yin ^a , Qiang Li ^a
4 5 6 7 8	 ^a School of Energy and Power Engineering, Nanjing University of Science & Technology, China ^b College of Energy and Power Engineering, Nanjing University of Aeronautics & Astronautics, China * Correspondent author. Tel: +86 025 84890688. E-mail: ymxuan@mail.njust.edu.cn
9	Abstract
10	The application of the thermoelectric (TE) modules can provide extra power in PV cell
11	systems, but the increased thermal resistance leads to an increase in the temperature of the PV
12	cells. In this paper, the phase change materials (PCMs) attached to the back side of the PV cell is
13	used to control the temperature of the PV cells. The PCMs transfers the heat absorbed from the PV
14	cell to the TE modules. A comprehensive experimental study is carried out to investigate the
15	performance of the photovoltaic-thermoelectric hybrid system with PCMs. The outdoor tests are
16	performed to reveal the influence of the cooling methods, the sunlight intensity, and the
17	uniformity of the concentrated light spot on the conversion efficiency of the system. The results
18	indicate that the conversion efficiency of the PV-TE hybrid system with PCMs is 0.56 % more
19	than solo PV cell system due to a decrease of the PV cell temperature and the efficiency
20	contribution of the TE modules. This work investigates the factors that affect the full spectrum
21	utilization of solar energy in PV cell systems.
22	
23	

25

24

1

Keywords: Photovoltaic; Thermoelectric; Phase change material; Triple-junction solar cells

Download English Version:

https://daneshyari.com/en/article/6764358

Download Persian Version:

https://daneshyari.com/article/6764358

<u>Daneshyari.com</u>