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a b s t r a c t

Polynomial surrogates are used to characterize the energy production and lifetime equivalent fatigue
loads for different components of the DTU 10 MW reference wind turbine under realistic atmospheric
conditions. The variability caused by different turbulent inflow fields are captured by creating inde-
pendent surrogates for the mean and standard deviation of each output with respect to the inflow re-
alizations. A global sensitivity analysis shows that the turbulent inflow realization has a bigger impact on
the total distribution of equivalent fatigue loads than the shear coefficient or yaw miss-alignment. The
methodology presented extends the deterministic power and thrust coefficient curves to uncertainty
models and adds new variables like damage equivalent fatigue loads in different components of the
turbine. These surrogate models can then be implemented inside other work-flows such as: estimation of
the uncertainty in annual energy production due to wind resource variability and/or robust wind power
plant layout optimization. It can be concluded that it is possible to capture the global behavior of a
modern wind turbine and its uncertainty under realistic inflow conditions using polynomial response
surfaces. The surrogates are a way to obtain power and load estimation under site specific characteristics
without sharing the proprietary aeroelastic design.

© 2017 Published by Elsevier Ltd.

1. Introduction

The wind turbine design standard IEC 61400-1 [1] provides
wind climate specifications which are used as a reference for the
structural design of the wind turbines. For achieving type certifi-
cation of a new turbinemodel, the designer has to demonstrate that
the structural capacity of the turbine is sufficient for withstanding
the reference wind conditions over the entire lifetime of the tur-
bine. Such a demonstration is normally given by dynamic load
simulations which characterize the behavior of the turbine under
the reference wind conditions. Once certification is achieved, the
given turbine model can safely be installed on sites where the wind
conditions are identical ormore benign than the reference standard
conditions. However, in many occasions one or more of the pa-
rameters describing the site environmental conditions will be
outside the ranges which are sufficiently covered by the IEC

reference conditions. In such cases, it is necessary to estimate the
actual loads which the turbine will experience over its entire life-
time, by considering the full joint distribution of the variables that
describe the turbulent inflow. This is similar to a propagation of
uncertainty problem in which the distribution of the atmospheric
conditions on the site needs to be propagated through the aero-
elastic model of the turbine.

If a full design load case setup similar to the IEC 61400-1 design
cases is used for that purpose, the problem quickly becomes time-
consuming as new dynamic simulations would be required for each
site. As an example, the number of simulations required to predict
within 1% error the lifetime equivalent fatigue loads on a floating
wind turbine where the inflow conditions (sea/wind) are charac-
terized by five stochastic variables can reach up to
3;200;000 ¼ 205 using regular grid-based estimates or in the order
of 50,000 using Monte-Carlo (MC) simulation [2]. An approach that
alleviates these issues is mapping the turbine response to different
environmental inputs by means of a fast and accurate surrogate
model. Several techniques can be used to predict the behavior of* Corresponding author.
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the turbine from a limited set of model evaluations such as:
interpolation techniques, response surface techniques [3], Gaussian
process (Kriging) [4] and machine learning techniques [5,6].

Polynomial chaos expansion is a methodology used to efficiently
propagate input uncertainties through a non-linear model. This
methodology consists in building a polynomial response surface to
capture the global dependency of the output as a function of the
uncertain inputs. PCE is widely used in the uncertainty quantifi-
cation field because of its simplicity and fast convergence in com-
parison to a full MC simulation based on the original model [7e11].
Furthermore, adaptive PCE training algorithms can be used to
obtain a sparse surrogate that minimizes the number of terms that
have multiple variable dependency, making the surrogates
extremely efficient response surfaces in multiple dimensions
[12e14]. In the case of smooth continuous models with multiple
input variables, sparse polynomial chaos expansionmethodology is
the most efficient technique to build the surrogates in terms of the
number of model evaluations required, the number of input di-
mensions they can handle and the rate of convergence [12].

One of the main difficulties in building a surrogate of an aero-
elastic wind turbine model is the fact that the turbulent inflow
realization (TIR, i.e. turbulent structures in the flow field) causes
variations in the different wind turbine model outputs: such as
power, thrust, fatigue and extreme loads in the different compo-
nents of the turbine. This can be restated as: an aeroelastic wind
turbine model has stochastic/non-deterministic outputs. Many
studies have analyzed the difficulties of studying fatigue and
extreme loads under different turbulent inflow realizations
[3,4,15e17]. Different TIR activate different dynamics of the struc-
ture and have different control system responses; therefore are an
important source of uncertainty in the prediction of the outputs of
the model [15]. The high variability in the model response to
certain turbulent inflow structures has also been shown to be
problematic when MC simulation was used to predict lifetime av-
erages of fatigue loads on a floating wind turbine [2].

1.1. Response to the problem

The aim of the present study is to demonstrate a method for
building a quick and accurate surrogate of a wind turbine model
that predicts the turbine response as a function of multiple sto-
chastic input variables that describe the turbulent inflow on a site
(x). The surrogate for the turbine model is a set of two independent
sparse polynomial response surfaces that allow to predict the
variability caused by different input variable distributions and by
different turbulent inflow field realizations (TIR). One response
surface characterizes the expected output with respect to TIR:byEðxÞzETIRðyjxÞ. The other one describes the standard deviation of
the output with respect TIR: bySðxÞz ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VTIRðyjxÞ
p

; which is a model
that predicts the uncertainty in the turbine response due to
different turbulent structures hitting the turbine. Finally, a sample
can be obtained from the normal distribution constructed using the
mean and the standard deviation surrogates in order to make a
prediction of the variability in the output at a given input point:

byðxÞ � NormalðbyEðxÞ; bySðxÞÞ (1)

The final surrogate byðxÞ can then be used to obtain distributions
of the wind turbine power and fatigue loads in a given year whose
input parameters (wind, wind/sea, or wind/geological conditions)
follow the distribution used to train the surrogate PDFðxÞ. Since the
surrogate is a response surface it can also be used to predict the
distribution of the outputs when the input distributions is close but
not exactly the distribution used for training the surrogate. This
setup is considered a multi-leveled uncertainty propagation and it

is the scenario that occurs when there is uncertainty in the pa-
rameters that characterize the WS distribution for example. This
approach is necessary to estimate the uncertainty in annual energy
production and lifetime averaged equivalent fatigue load.

1.2. Article overview

A general overview of the PCE methodology in multiple di-
mensions is presented in Section 2. This section describes the
Rosenblatt transformation, the design of experiments used to
define the training simulation points, the approach used to train
sparse polynomial response surfaces and the logistic trans-
formation used to limit the output. In Section 3, the methodology is
then applied to the response of the DTU 10 MW reference wind
turbine HAWC2 model [18] to turbulent inflow fields characterized
by four input parameters. The four input parameters are the 10-min
averaged hub height wind speed (WS), the turbulent standard
deviation of the instantaneous wind speed in the streamwise
component (s1), the shear exponent (a) and the yaw misalignment
angle (g). A study of how many independent realizations of the
turbulent inflow field are required to achieve a certain error
tolerance in the surrogate is presented in the Section 3.7. Finally in
Section 3.8, the surrogates are used in an example of prediction of
the uncertainty in the annual energy production and the uncer-
tainty in lifetime averaged equivalent fatigue loads.

2. Methods

This article proposes the use of two different variable trans-
formations to simplify the polynomial response surface fitting
problem, see Fig. 1. The first transformation is the Rosenblatt
transformation [19], which is used to de-correlate the set of D input
variables x ¼ ðx0; x1;…xD�1Þ into a set of independent uniform
variables, w ¼ ðw0;w1;…wD�1Þ. The second transformation is a
logistic transformation, and it is used to enforce constraints on the
polynomial surrogates [20]. This transformation enables the use of
polynomial surrogates in problems where the output has a mini-
mum and/or maximum value. Without the logistic transformation
the polynomial surrogates will present oscillations in the regions
where the model has a constant output. The power production of a
turbine is an example of a variable with a strict upper constraint
corresponding to the rated power.

2.1. 1D PCE theory

Consider a model with a single uncertain input (x) and a single
output (y). PCE consists of defining a polynomial family that is
orthogonal with respect to the input distribution, PDFðxÞ. Orthog-
onal polynomial families with respect to the most important dis-
tributions are well known, see Table 1. For details on how to define
new polynomial basis to an arbitrary input distributions refer to
Gautschi et al. [21].

The orthogonal polynomials are used to build a polynomial
approximation of the output, i.e. a polynomial response surface, see
Equation (2). Where, flðxÞ is the l order orthogonal polynomial, cl is
its correspondent coefficient andM represents the truncation order
of the PCE.

yðxÞzbyðxÞ ¼XM
l¼0

cl flðxÞ (2)

There are two different approaches to determine the cl
coefficients:

Semi-Spectral projection consists in using quadrature rules to
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