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a b s t r a c t

Mathematical modelling is the theoretically established tool to investigate and develop solar thermal
collectors as environmentally friendly technological heat producers. In the present paper, the recent and
accurate multiple linear regression (MLR) based collector model in Ref. [1] is empirically improved to
minimize the modelling error. Two new, improved models called IMLR model and MPR model (where
MPR is the abbreviation of multiple polynomial regression) are validated and compared with the former
model (MLR model) based on measured data of a real collector field. The IMLR and the MPR models are
significantly more precise while retaining simple usability and low computational demand. Many at-
tempts to decrease the modelling error further show that the gained precision of the IMLR model cannot
be significantly improved any more if the regression functions are linear in terms of the input variables.
In the MPR model, some of the regression functions are nonlinear (polynomial) in terms of the input
variables.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is highly important nowadays to study and develop solar
thermal collectors within the framework of environmental pro-
tection. The theoretical tool for this purpose is mathematical
modelling. Two main types of mathematical models exist for col-
lectors: physically-based (or white-box) models describe exact and
known physical laws, while black-box models represent some
experienced or measured correlations empirically.

In the literature, there are numerous physically-based models.
One of the most important and still often used ones is the Hottel-
Whillier-Bliss model [2,3], which is also among the earliest
models. The collector temperature is determined as a function of
time and a space coordinate in this distributed model. Buz�as et al.
[4] proposed a simpler model based on the piston flow concept
assuming that the collector temperature is homogeneous in space.
This model is a linear ordinary differential equation (ODE) validated
in Ref. [1] and is probably the simplest such (physically-based and
ODE) model used in the practice (see e.g. Refs. [5e8]), which de-
scribes the transient processes of a collector with a proper accuracy.

The greatest advantage of black-box type models is that it is not
needed to know precisely the physical laws of a collector in order to
create an usable model. Nevertheless, the model may be rather
precise even if it is mathematically simple as in the case of Ref. [1].

In the scope of solar thermal systems, the most widely used black-
box model type may be the artificial neural network (ANN). In
Ref. [9], the useful heat gained from a solar heating system as well
as the temperature rise of the storagewater were predicted with an
ANN with an error of 7e10%, which is considered proper accuracy
with respect to such systems [10]. The layer temperatures are
modelled in a solar storage by means of an ANN elaborated in
Ref. [11].

In particular, ANNs are frequently applied to model solar col-
lectors separately as well. Generally speaking, ANNs are precise
modelling approaches but quite troublesome to use because of the
necessary training/learning process. A lot of measured data must be
collected under various working conditions to train the ANN for
gaining a satisfactory precision. E.g. in Ref. [12], the training re-
quires the measured data of three months or in Ref. [13], the
measurements of 17 days are needed to work out an ANN, which
models a collector under similar circumstances as during the
measurements. Only one so-called back-propagation algorithm
(which is needed in the training) from the 11 available ones pro-
vides a proper approximation in the latter work, based on which, it
can be easily concluded that the success of an ANN, and its
computational demand, depend highly on the user's expertise.
Also, the convergence of the algorithm indicating the end of the
training can be time-consuming. Ref. [14] demonstrates the prob-
lem of uncertainty as well, where six separate ANNs are used to
identify several collector parameters, so there is no general and
exact instruction for designing appropriate ANNs. In fact, anE-mail address: Kicsiny.Richard@gek.szie.hu.
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universal applicable algorithm, which ensures a reliable and fast
design of a proper ANN for a collector is still missing based on
Fischer at al [15].

Because of the above difficulties on complexity/uncertainty and
time/computational demand, a precise and general but still simple
black-box model has been proposed recently in Ref. [1], which can
be applied fast and easily for many types of solar collectors. The
model (calledMLR model in short) is founded on standard methods
from mathematical statistics, in particular, on multiple linear
regression (MLR). Based on studies in the literature, the author
found that MLR is a relatively rare black-box modelling tool in the
field of solar collectors in spite of its simplicity. MLR can be applied
to identify collector parameters in white-box models (see
Refs. [16e18]) and to model collector efficiency in collector test
methods [19,20]. In Ref. [21], the annual thermal performance of
collectors is modelled as a function of the annual solar radiation by
means of linear regression. In the mentioned MLR model, a typical
day has been divided into sub-cases, for which, separate regression
equations have been proposed to reach higher precision. The
regression equations describe empirical relations immediately be-
tween input and output variables of collectors. Considering the
high precision (with an error of 4.6%), simple usability and low
computational demand of the MLR model, it is definitely worth
improving further to maximize its precision while retaining simple
usability and low computational demand. Accordingly, this
improvement has been set as a future research task in the
Conclusion of Ref. [1].

The following are the contributions of the present paper in
details: the MLR model is empirically improved by means of
inserting new operating sub-cases in a rather natural way. On the
basis of measured data of a real collector, two new, improved
models called IMLR model and MPR model (where MPR is the
abbreviation of multiple polynomial regression) are identified
(based on four days), validated (based on two months) and
compared with the MLR model in view of accuracy. In the MPR
model, some of the regression functions/equations are nonlinear
(polynomial) in terms of the input variables. Polynomial regression
is generally considered as a special linear regression, since the
regression functions are linear in terms of the constant parameters
(which are to be identified), although not linear in the input vari-
ables. If the regression functions are all linear, the regression can be

called simple linear regression.
Matlab [22] has been used to carry out the needed calculations

numerically. This software is widely used in the field of solar en-
gineering to simulate different systems (see e.g. Ref. [23]).

The paper is structured as follows: Section 2 recalls the details of
the recent MLR model for the Reader's convenience. In Section 3,
the new IMLR and MPR models are worked out. These models are
validated in Section 4 by means of measured and simulated data.
Finally, conclusions and future research suggestions can be found in
Section 5.

2. MLR model

For the Reader's convenience, the MLR model [1] is recalled in
details in this section. Fig. 1 shows the studied solar collector.

The inputs in the MLR model are from appropriate Tin, I, Ta and
Tout values. The output is from appropriate Tout values. The flow rate
v is a prefixed positive constant or 0 according to the differential
control, which is not only the most frequent control method but
also the optimal or nearly optimal one many times [24,25].

Since the flow rate is bounded, only Tin(t� t1) can function as an
input in the MLR model, where t1 is a (positive) time delay and the
formed output is Tout(t). Similarly, only former I(t � t2) and
Ta(t � t2) values can function as inputs corresponding to the output
Tout(t) because these effects have bounded propagation speed. (For
simplicity, the same delay (t2) is assumed for I and Ta.) Of course, an
adequate former value of Tout affects Tout(t) itself and functions
essentially as the initial value in the MLRmodel at the time (t � t2).
In the (black-box type) MLR model, distinct sub-models were
identified for separate operating conditions. It is clear, for example,
that the collector behaves very differently if the pump is off (v ¼ 0)
or on (v > 0) permanently. Under the same conditions, including a
high enough solar irradiance, the collector temperature and thus
Tout increases muchmore fast when the pump is off. The effect of Tin
was neglected in permanently switched off case, since there is no
flowing from the inlet to the outlet in the collector.

Assuming a typical day, when the increase of Tout is relatively
high, three separate operating conditions were distinguished in
accordance with Fig. 2.

The exact specification of each case is the following:
Case A: The pump is switched off permanently. Case A contains

the term started at the beginning of the day and finished, when the
pump is first switched on. All the terms, which begin at a time
when the pump is permanently off for exactly tA time and finish at
the next switch-on or at the end of the day, also belong to this case.
(tA is the time, which is generally enough for Tout to become not
fluctuating but permanently monotone, since, intentionally,
frequent fluctuations are characteristics of Cases C1 and C2.)

Nomenclature

t time, s
Tout homogeneous temperature inside the collector

(assumed to be the same as the outlet collector
temperature), �C

I global solar irradiance on the collector surface, W/
m2

Ta ambient temperature of the collector, �C
Tin inlet collector (fluid) temperature, �C
V volume of the collector, m3

v (constant) flow rate inside the collector, m3/s
tA time delay before Case A or A3, s
tB time delay before Case B, s
t1 time of flowing inside the collector from the inlet to

the outlet when the pump is switched on
permanently, s

t2 length of time between successive measurements
on the collector, s

Fig. 1. The studied solar collector.
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