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A B S T R A C T

Using a new pseudo-dynamic approach for the inclusion of seismic body forces, the seismic vertical uplift ca-
pacity of horizontally placed strip plate anchors in sand at shallow depths has been computed with the appli-
cation of upper bound theorem of limit analysis. Unlike the earlier pseudo-dynamic approaches, in this study, the
nonlinear variation of both horizontal and vertical acceleration along the depth of soil layer, and in the values of
amplitude and phase of accelerations has been considered with the satisfaction of stress boundary condition at
the ground surface. The seismic uplift factor Fγs due to the unit weight of soil for different combinations of
seismic acceleration coefficients, internal friction angle of soil, and the embedment ratio of anchors has been
obtained. The solutions indicate that the magnitude of Fγs decreases substantially with an increase in seismic
acceleration coefficients; whereas as expected, increases with an increase in embedment ratio of anchors and soil
friction angle. This study produces the least upper bound solutions in comparison to the earlier reported results
in the literature.

1. Introduction

Anchors are often used as a foundation system for various important
structures requiring uplift resistance such as transmission towers, dry
docks and buried pipelines under water etc. In addition to static forces,
the anchors located in a seismically active zone are also subjected to
seismic body forces during the event of an earthquake. Under static
condition, the uplift capacity of anchors has earlier been computed by
different researchers [1–15]. In the presence of seismic loadings, the
uplift capacity of anchors have been computed by using pseudo-static
approach [16–19] and pseudo-dynamic approach [20–24]. In the
pseudo static approach, the magnitude and phase of acceleration are
assumed to be uniform throughout the soil medium and this unrealistic
assumption can be tackled using a simple pseudo-dynamic approach
proposed by Steedman and Zeng [25]; and also the approach extended
by Choudhury and Nimbalkar [26]. However, this pseudo-dynamic
approach again involves disadvantages such as,

(i) The stress boundary conditions (i.e. shear and normal stresses are
equal to zero; σxz = 0 and σzz = 0) at ground surface are not sa-
tisfied
(ii) A simplified linear variation for amplification of vibration is
assumed

This simplified pseudo-dynamic approach was employed for solving
anchor problems [20,21]. Very recently, Bellezza [27,28] proposed a
new pseudo-dynamic approach based on a more realistic behavior of
soil modeled as a Kelvin–Voigt solid, which overcomes the aforemen-
tioned disadvantages. Using this new pseudo dynamic approach, Pain
et al. [22] have computed seismic uplift resistance of strip anchors in a
limit equilibrium framework similar to Choudhury and Subba Rao
[17,18]. However, their analysis requires assumptions regarding the
selection of (i) wall friction angle, and (ii) point of application of
seismic passive resistance [23,24]. Moreover, the effect of vertical ac-
celeration was not taken into consideration. Hence, following new
pseudo dynamic approach of Bellezza [27,28] and taking into account
the effect of both horizontal and vertical accelerations together with the
application of kinematic theorem of limit analysis, this note presents
the upper bound solutions for the seismic uplift capacity of horizontal
strip plate anchors. The results obtained from the present analysis are
compared with those results reported in the literature.

2. Problem statement

A rigid strip plate anchor having width B buried horizontally in a
homogeneous sand layer at a depth H from the ground surface is illu-
strated in Fig. 1. The ultimate uplift load carrying capacity Pu of this
plate anchor needs to be determined in the presence of pseudo dynamic
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earthquake forces. For simplifying the analysis, it has been assumed
that (i) the mass of the anchor is negligible, (ii) the soil mass is dry and
follows Mohr-Coulomb failure criterion with an associated flow rule,
and (iii) the occurrence of an earthquake does not affect the magnitude
of soil parameters.

3. Analysis

3.1. Wave equation

The horizontal and vertical accelerations are obtained from the
concept of viscoelastic wave propagation in a soil medium, which is
modeled as a Kelvin–Voigt solid represented by a purely elastic spring
and a purely viscous dashpot connected in parallel [29]. The motion
equations of a wave propagating along the z-axis in xz plane for the
Kelvin–Voigt viscoelastic medium can be written as
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where u and v are the displacements in the horizontal (x-axis) and
vertical (z-axis) directions; respectively, ρ refers to the soil density, G
and λ account as the Lamé constants, η1 and ηs are the soil viscosities
and t is the time.

Following Bellezza [27], for a harmonic horizontal vibration of
angular frequency ωs and period Ts = 2π/ωs by imposing the boundary

conditions (i) at z=0, σxz = 0 and (ii) at z=H, displacement coincides
with that of anchor plate, the horizontal accelerations at any depth z
and time t can be expressed as
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By satisfying the boundary conditions (i) at z=0, σzz = 0, and (ii)
at z=H, displacement coincides with that of anchor plate and fol-
lowing Bellezza [28], for a harmonic vertical vibration of angular fre-
quency ωp and period Tp = 2π/ωp, the vertical accelerations at any
depth z and time t can be written as
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where kh and kv are the horizontal and vertical acceleration coef-

ficients at the base of the anchor plate, respectively; uo and vo are the
amplitudes of horizontal and vertical displacements at the base of the
anchor plate, respectively.

The other parameters introduced in Eqs. (3) and (4) are defined as
follows;
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In the Eqs. (5)–(7), the subscript ‘a’ is replaced with the subscripts ‘s’
and ‘p’ to define the parameters of Eqs. (3) and (4), respectively. The
dimensionless quantities ys1 and yp1 in Eq. (7) is a function of damping
ratios ξs = ηsωs/2G and ξp = (η1 + 2ηs)ωs/2(λ+2G); normalized fre-
quencies ωsH/Vs and ωpH/Vp of a vertically propagating shear and
primary waves with velocities Vs and Vp, respectively. In this study,
both horizontal and vertical accelerations at any depth z have been

Notations

V velocity of soil block MNOP
α inclination of velocity of soil block V with the vertical
θ1, θ2 inclination of linear rupture surfaces OP and MN with

horizontal plane
ϕ internal friction angle of soil
γ unit weight of soil mass
ρ soil density
f amplification factor
G shear modulus of the soil
λ first Lame´ constant
g acceleration due to gravity
B width of strip anchors
H embedment depth of anchors
ε embedment ratio of anchors = H/B
z depth from the ground surface
W(α) weight of soil block MNOP
m(α,z) mass of the differential element dz
Pu(α,t) vertical seismic uplift resistance

αc α corresponding to minimum value of Pu(α,tc)
Fγs seismic uplift factor
kh, kv acceleration coefficient at anchor base in horizontal and

vertical directions
kh,avg, kv,avg weighted average acceleration coefficient in horizontal

and vertical directions
ah(z,t), av(z,t) horizontal and vertical accelerations at any depth z

and time t
u, v horizontal and vertical displacements
u0, v0 horizontal and vertical displacements at the level of an-

chor base
Qh(α, t), Qv(α, t) horizontal and vertical inertia forces
ωsH/Vs, ωpH/Vp normalized frequency of shear and primary waves
ξs, ξp damping ratio of shear and primary waves
ωs, ωp angular frequency of shear and primary waves
Ts, Tp period of shear and primary waves
Vs, Vp velocity of shear and primary waves
ηs, ηp, η1 soil viscosities
t time
tc time (t) corresponding to minimum value of Pu(αc,t)

Fig. 1. Definition of the problem.
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