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A B S T R A C T

This paper studies a non-random-walk Markov Chain Monte Carlo method, namely the Hamiltonian Monte Carlo
(HMC) method in the context of Subset Simulation used for reliability analysis. The HMC method relies on a
deterministic mechanism inspired by Hamiltonian dynamics to propose samples following a target probability
distribution. The method alleviates the random walk behavior to achieve a more effective and consistent ex-
ploration of the probability space compared to standard Gibbs or Metropolis-Hastings techniques. After a brief
review of the basic concepts of HMC method and its computational details, two algorithms are proposed to
facilitate the application of HMC method to Subset Simulation in reliability analysis. Next, the behavior of the
two HMC algorithms is illustrated using simple probability distribution models. Finally, the accuracy and effi-
ciency of Subset Simulation employing the two HMC algorithms are tested using various reliability examples in
both Gaussian and non-Gaussian spaces.

1. Introduction

Since analytical solutions of general reliability problems either at
component or system level are usually unavailable, approximate relia-
bility methods such as first- and second-order reliability methods [1,2],
response surface methods [3,4], and Monte Carlo simulation (MCS)
techniques [5–8] have gained wide popularity. Compared with other
reliability methods, MCS has the benefits of being accurate, insensitive
to the complexity of limit-state functions and straightforward to im-
plement. On the other hand, the efficiency of MCS depends on magni-
tude of the estimated probability. Since most practical reliability pro-
blems are characterized by small failure probabilities, the MCS scheme
using the original probability density function can be computationally
inefficient and often infeasible. To enhance the efficiency of MCS,
variance-reduction Monte Carlo methods have been developed. One
powerful variance-reduction Monte Carlo method which has been
widely used in reliability analysis is Subset Simulation [7]. The method
expresses the failure domain of interest as the intersection of a sequence
of nested intermediate failure domains, and the failure probability of
interest is expressed as a product of conditional probabilities associated
with the intermediate failure domains. Since the conditional prob-
abilities are significantly larger than the target failure probability the
computational cost of Subset Simulation is significantly lower than the

crude MCS method. The challenge of the scheme, which consists of
evaluating the intermediate conditional probabilities, is overcome by
using efficient Markov Chain Monte Carlo (MCMC) methods. It is noted
that approaches essentially similar to Subset Simulation have been in-
dependently developed for other statistical computing applications
under the names, Sequential Monte Carlo method (or Particle Filters)
[9] and Annealed Importance Sampling [10].

The crucial step in Subset Simulation is to obtain random samples
according to a sequence of probability distributions that are conditional
on nested intermediate failure domains. The efficiency and accuracy of
Subset Simulation is directly affected by those of the MCMC algorithm
used to produce random samples representing the conditional dis-
tributions in the sequence. In the current practice of Subset Simulation,
various random-walk-based MCMC methods [11,12] are employed to
generate samples based on each conditional distribution model in the
sequence. In this paper, a non-random-walk MCMC method, namely the
Hamiltonian Monte Carlo (HMC) method [13,14], is studied in the
context of Subset Simulation for reliability analysis. The HMC method
employs a deterministic mechanism inspired by Hamiltonian dynamics
to propose samples for a target probability distribution. The method
alleviates the random-walk behavior to achieve a more effective and
consistent exploration of the probability space compared to standard
Gibbs or Metropolis-Hastings techniques.
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Originally developed in 1987 by Duane et al. [13] under the name
“Hybrid Monte Carlo” method for lattice field theory simulations in
Lattice Quantum Chromodynamics, the HMC method has been in-
troduced to mainstream statistical computing starting from the work of
Neal [15] in 1993. The popularity of the HMC method has grown ra-
pidly in recent years, and has proven a remarkable success in various
statistical applications [16–18]. The HMC method has been applied to
Bayesian analysis of structural engineering problems [19,20]. However,
to our knowledge, the application of the HMC to reliability analysis has
never been studied. Motivated by this perspective, the paper studies the
application of HMC to Subset Simulation for reliability analysis. In this
context, the accuracy and efficiency of the HMC are investigated and
compared with the conventional random-walk Metropolis-Hastings al-
gorithm.

The structure of this paper is as follows. Section 2 briefly reviews
the Subset Simulation. Section 3 introduces general concepts of HMC.
Section 4 develops the computational details of HMC algorithms for
Subset Simulation method. Section 5 shows the behavior of HMC-based
Subset Simulation using simple distribution models. Next, in both
standard Gaussian space and non-Gaussian spaces, it is presented a
series of numerical examples with analytical limit-state functions as
well as structural reliability examples to test and demonstrate the va-
lidity of the method. Finally, Section 6 presents concluding remarks and
future directions.

2. Subset simulation

In reliability analysis, the failure probability of a system with basic
random variables ∈x n can be expressed by an integral,

�∫=P I f dx x x( ) ( )f n (1)

where �I (·) is a binary indicator function which gives ‘1’ if point x is
within the failure domain � , and ‘0’ otherwise, and f x( ) is the joint
probability density function (PDF) of x . A common practice in relia-
bility analysis is to apply a transformation to random variables x, de-
noted by =x uT( ), so that x can be expressed in terms of independent
standard Gaussian random variables u. With the transformation, Eq. (1)
can be rewritten as

�∫=P I φ du u u[T( )] ( )f n (2)

where φ u( ) denotes the multivariate standard Gaussian PDF.
The Subset Simulation solution of Eq. (2) involves the construction

of a sequence of nested intermediate failure domains, so that the failure
domain of interest, � , is expressed by
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j
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where � � �⊃ ⊃…⊃ M1 2 , and � �= M . The failure probability
�= ∈P uPr( )f can be written as
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where � = n
0  , thus �∈ =uPr( ) 10 . Each � �∈ ∈ −u uPr( | )j j 1 in Eq.

(4) can be computed using

� � ��∫∈ ∈ =− −I φ du u u u uPr( | ) ( ) ( | )j j j1 1n j (5)

where � −φ u( | )j 1 is the conditional/truncated multivariate standard
Gaussian PDF. Using an MCMC technique to generate samples of

� −φ u( | )j 1 , Eq. (5) can be evaluated by MCS, i.e.
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in which ui are samples generated from conditional PDF � −φ u( | )j 1 . In

implementations of Subset Simulation, the nested failure domains are
chosen adaptively such that � �∈ ∈ −u uPr( | )j j 1 , = … −j M1, 2, , 1,
approximately equals to a specified percentile p0. The failure prob-
ability is then estimated as follows
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where ui are sampled from � −φ u( | )M 1 .
The estimator of the failure probability is biased because of the

correlation of the samples [7] and the adaptive nature of the subsets
[9]. The order of the bias is −O N( )1 , which is negligible compare to the
coefficient of variation (c.o.v.), �δ , of the estimate. For a given run of
the algorithm, an estimate of �δ is given as [7]
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where δj is the c.o.v of the j-th subset which is given as follows
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where � �= ∈ ∈ −P u uPr( | )j j j 1 denotes the conditional probability,
and γj is expressed as
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where =N p Nc 0 denotes the number of Markov chains at each subset
level, and ρ k( )j is the average of the correlation coefficient at lag k of

the stationary sequence = …−
+−

I k N Nu[ ( ): 1, , / ]F j
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ρ k( )j can be estimated directly from the sequence [7].

3. General concepts of Hamiltonian Monte Carlo method

This section provides a brief introduction of HMC method with the
focus on its basic concepts. Detailed descriptions of the method can be
found in [13,14]. Specifically, Section 3.1 introduces basic principles of
Hamiltonian mechanics that are keys in formulating the HMC method.
Then, Section 3.2 provides the ideas of HMC for sampling from a
general distribution.

3.1. Hamiltonian mechanics

Hamiltonian mechanics was proposed to provide a reformulation of
classical mechanics in a more abstract form, but later it made sig-
nificant contributions to the development of statistical mechanics and
quantum mechanics. The Hamiltonian Monte Carlo method uses a de-
terministic procedure inspired by Hamiltonian mechanics to generate
samples based on the target probability distribution. In this section a
brief introduction of Hamiltonian mechanics is first provided.

Hamiltonian mechanics describes the time evolution of a system in
terms of position vector q and momentum vector p. The dimension of p
and q should be identical, and q p( , ) defines a position-momentum
phase space. The time evolution of the q p( , ) system is governed by
Hamilton’s equations expressed by

= ∂
∂
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∂
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where ≡ q qL L t( , ,̇ ) is the Lagrangian, which (in the non-relativistic
setting) corresponds to the discrepancy between kinetic energy and
potential energy, or free energy; and = q pH H t( , , ) is the Hamiltonian,
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