
Contents lists available at ScienceDirect

Structural Safety

journal homepage: www.elsevier.com/locate/strusafe

Effective Young’s modulus of a spatially variable soil mass under a footing

Jianye Chinga,⁎, Yu-Gang Hua, Kok-Kwang Phoonb

a Dept of Civil Engineering, National Taiwan University, Taipei, Taiwan
bDept of Civil and Environmental Engineering, National University of Singapore, Singapore

A R T I C L E I N F O

Keywords:
Spatial variability
Young’s modulus
Homogenization
Random field
Footing

A B S T R A C T

This study investigates the possibility of representing the effective Young’s modulus (Eeff) for a footing problem
supported on a spatially variable medium - the Young’s modulus actually “felt” by the footing - using a spatial
average. The Eeff is simulated by a homogenization procedure that matches the responses between a random
finite element analysis (RFEA) and a homogeneous finite element analysis. Emphasis is placed on whether the
spatial average can well represent the numerical value of Eeff in each spatially varying realization, not just the
statistics of Eeff within an ensemble (a weaker requirement). It is found that the conventional spatial averaging
model that treats all soil regions equally important cannot satisfactorily represent Eeff. Extensive numerical
results show that the concept of “mobilization” is essential: highly mobilized soil regions close to the footing
should be given larger weights than non-mobilized remote regions. Moreover, the non-uniform weights can be
prescribed prior to RFEA, that is, they do not depend on the specific response corresponding to a specific random
field realization. The “prescribed mobilization” for the spatially variable Young’s modulus can be contrasted
with the “emergent” mobilized shear strength in a spatially variable medium that results from the emergent
nature of the critical failure path – it cannot be predicted prior to random finite element analysis. A key con-
tribution of this paper is the development of a simple method based on the “pseudo incremental energy” to
estimate the non-uniform weights for the spatial averaging using a single run of a homogeneous finite element
analysis.

1. Introduction

The spatial variability of soil parameters has profound impact to the
behavior of a geotechnical structure. In the literature, the impact of a
spatially variable soil Young’s modulus (E) on footing settlements has
been widely studied [23,21,10,11,17,14,20,25,1,2,3]. For footings on
soils with isotropic scales of fluctuation (SOF), an important observa-
tion made in Fenton and Griffiths [10,11] is that the statistics (mean
and variance) for the “effective” Young’s modulus (Eeff) are similar to
those for the geometric average (Eg) over a prescribed domain under
the footing. It is important to emphasize that Eeff is determined from the
deformation response of a random finite element analysis (RFEA) (i.e.,
it is an output of a boundary value problem such as a footing applying
pressure on top of a semi-infinite soil domain). The various spatial
averages can be calculated from the input random field describing the
spatial distribution of the Young’s modulus over the semi-infinite soil
domain (i.e., they are inputs unrelated to the boundary value problem).

It was reported in Fenton and Griffiths [10,11] that the settlement of
a footing overlying a random field and a homogeneous field is the
“same” in terms of second-moment statistics (mean and variance) if the

homogeneous field is described by a suitable spatial average. Based on
RFEA, Ching et al. [5,7] obtained a stronger conclusion for a soil
square/cube subjected to displacement-controlled compression. They
found that not only the statistics of Eeff can be well represented by a
suitable spatial average but also Eeff is very strongly correlated to the
spatial average. Note that the similarity in the statistics does not imply a
very strong correlation, e.g., two random variables can have same
statistics and yet be completely uncorrelated. This is a subtle but im-
portant point – a strong correlation between two random entities im-
plies approximate agreement at the realization level, which is critical for
reliability analysis, while comparable statistics merely imply agreement
at the ensemble level. The latter is a weaker condition in the sense that
the former implies that latter but not vice versa. Moreover, Ching et al.
[7] found that this very strong correlation only exists for the soil
square/cube subjected to displacement-controlled compression, not for
the footing problem. For the footing problem, there is a significant
scatter between Eeff and the spatial average, even though the statistics
of Eeff can be well represented by the spatial average.

The purpose of this study is to propose a new spatial averaging
method for the footing problem so that not only Eeff and the spatial
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average have similar statistics but they are also very strongly corre-
lated, i.e., a new spatial averaging method that can effectively predict
the “numerical value” of Eeff in each realization, not only its statistics at
the ensemble level. It will be clear that the resulting spatial average is
not a uniform “mobilization” but a non-uniform mobilization. The soil
elements significantly influenced by the footing load are highly mobi-
lized, whereas those remote to the footing have negligible mobilization.
More importantly, it is found that the degree of mobilization can be
well quantified by a certain quantity that is derived from the stress/
strain change due to the footing load, and the spatial distribution of
such a quantity can be obtained by a single run of a deterministic finite
element analysis (FEA). The latter point is of critical practical im-
portance. With the new spatial averaging method, it will be possible to
simplify a RFEA involving a random field to a random variable problem
which is less costly and perhaps more importantly, make probabilistic
design more accessible to engineers. A single deterministic FEA is
needed as a pre-processing step to compose the new spatial average
(which is a random variable), but the cost of a single run is negligible
compared to thousands of runs in a RFEA.

An important conclusion of this study is that the effective Young’s
modulus can be well represented by the spatial averaging with a pre-
scribed non-uniform mobilization, which means that the non-uniform
mobilization can be determined apart from the random field realiza-
tions and prior to RFEA. This is in contrast with the observations for
shear strength: the authors [4,18,6,8] have shown that the mobilized
shear strength is not the average along a prescribed curve but the
average along the critical slip curve, which is an emergent curve that
changes from realization to realization and cannot be predicted prior to
RFEA. The possible reason for why this is true will be discussed in this
paper.

2. Footing problem under investigation

2.1. Random field model

Consider a footing on a two-dimensional (2D) spatially variable soil
mass, modeled by finite elements (FE) as shown in Fig. 1. The size of the
footing is B=2m, and the soil mass has horizontal dimen-
sion= L=20m and depth=D=10m. The spatially variable Young’s
modulus, denoted by E(x,z), is modeled as a stationary lognormal
random field with inherent mean= μ and inherent coefficient of var-
iation (COV)=V. To define the correlation structure between two lo-
cations with horizontal interval distance= Δx and vertical interval
distance= Δz, the single exponential auto-correlation model is con-
sidered [27–28]:

= − −δ δρ(Δx,Δz) exp( 2|Δx|/ 2|Δz|/ )x z (1)

where δx and δz are the SOFs in the (x,z) directions, respectively, for the

ln[E(x,z)] random field. The ln[E(x,z)] random field is a 2D stationary
normal random field with mean= λ= ln[μ/(1+V2)0.5] and var-
iance= ξ2= ln(1+V2). In this study, the local average for ln(E) of
each FE is taken to be the arithmetic average for ln[E(x,z)] over the
element, and this local average is simulated using the Fourier series
method [19,9]. The E of each FE is simulated as the exponential of its
local average for ln(E). The E of each FE is in fact the geometric average
for E(x,z) over the element. The mean value of this E is not exactly μ
[13]. The correction factor (1+V2)0.5×(1-Γ2

) is multiplied to the si-
mulated E to ensure the mean value is μ, where Γ2 is the variance re-
duction factor for the local averaging effect (see Eq. 22 in [13] for the
correction factor and Eq. 15 for the definition of Γ2). In the case that the
sizes of the element are significantly smaller than the SOFs, a geometric
average is roughly the same as an arithmetic average (correction factor
≈ 1). Fig. 1 shows a realization of the E random field with
δx= δz = 1m. The E value for the light region is low, while that for the
dark region is high. The Poisson’s ratio (ν) is assumed to be constant
(ν=0.3), because the impact of the spatial variability of the Poisson’s
ratio is insignificant [10,11,5].

2.2. Finite element model

The 20m×10m plane strain rectangular domain is modeled by the
FE mesh shown in Fig. 1. Each FE is a 4-noded element of
size= 0.2m×0.2m. In total, there are 100× 50=5000 elements
with reduced integration (CPE4R). Each FE follows an isotropic elasti-
city model with E= its local geometric average multiplied by the cor-
rection factor (1+V2)0.5×(1-Γ2

), ν=0.3, and unit weight γ=20 kN/
m3. The nodes along the vertical boundary are constrained against
horizontal displacement (roller, see Fig. 1), whereas the nodes on the
bottom boundary are fixed (hinge). The top boundary is free, except the
B=2m line segment under the footing. The footing is assumed to be
rigid and the soil-footing interface is assumed to be rough. The Young’s
modulus of the soil mass is modeled as a stationary lognormal random
field with inherent mean= μ=20,000 kN/m2 and inherent coefficient
of variation V=1.0. Cases with δx= δz= δ will be first considered.
Five SOFs are considered: δ=1m, 2m, 5m, 10m, 100m, and 1000m
(δ/B=0.5, 1, 2.5, 5, 50, and 500). For each δ, one thousand realiza-
tions of E random fields are simulated.

2.3. Simulation of effective Young’s moduli

For each random field realization, a geostatic step is adopted to
build up the in-situ stress field over the entire soil mass. Then, the
footing is loaded with a vertical downward uniform displacement
uz= 0.1m in the FE simulation, not allowing any rotations. This is an
important practical case – footings cannot rotate because they are
constrained by ground beams. Footings can rotate in other cases, e.g. a
monopile supporting a wind turbine. This (a footing that can rotate)
will be addressed in our future work. The resulting total contact force
between the footing and the soil mass is recorded. Another FE simu-
lation with homogeneous E is conducted, following the same geostatic
step and the same displacement-controlled loading. The homogeneous
E value is adjusted until the total contact force matches that for the
random field realization. The adjusted E value is called the effective
Young’s modulus, Eeff, for the random field realization. This process is
sometimes called “homogenization” [16,15,22]. It is worth empha-
sizing Eeff is a response (or an output) from a RFEA.

2.4. Results for cases with δx = δz

Fig. 2 shows the pairwise plot for the simulated Eeff/μ versus (spatial
average)/μ for cases with δx= δz = δ, where the spatial average is the
geometric average (Eg) over the 1B×5B domain under the footing.
This averaging domain was considered in Fenton and Griffiths [10].
This spatial averaging model will be denoted by the Eg model. Although

Fig. 1. Realization of the E random field for the 2D footing problem with
δx= δz= 1m.
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