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A B S T R A C T

The micropolar theory (MPT), through taking the rotational degrees of freedom of material particles into
account, is a suitable elasticity theory for the mechanical analysis of microstructures. In this article, the vi-
bration behavior of microscale beams and plates is studied based on MPT. To this end, first, a three-dimen-
sional (3D) formulation is developed for the micropolar continua which can be readily used in the finite
element analyses. Then, a non-classical 3D element is introduced to investigate the free vibration character-
istics of micropolar beams and plates. The microstructure effect on the frequencies of microbeams and mi-
croplates under different kinds of boundary conditions is illustrated. Also, the results of MPT are compared
with those of classical theory and it is indicated that there is a considerable difference between their pre-
dictions at small scales.

1. Introduction

It is experimentally revealed that the mechanical behavior of
structures at small scales becomes size-dependent [1–6]. Therefore,
although the classical continuum mechanics is regarded as an efficient
approach for the analysis of large scale structures, its use in the pro-
blems of micro- and nano-structures is in doubt. Up to now, a variety
of non-classical continuum theories have been developed with the aim
of capturing the small scale effect on the mechanical behavior of
micro- and nano-structures. The strain gradient [7–9], nonlocal
[10,11], couple stress [12–14], micropolar [15,16], micromorphic
[17] and surface stress [18,19] elasticity theories are popular non-
classical continuum approaches whose applications to the problems of
small-scale structures have been reported in many research works
[20–29].

The concept of micropolar or Cosserat elasticity theory was firstly
proposed by Cosserat brothers in 1909 [30]. Later, Eringen and Suhubi
[15,16], Günther [31], Ieşan [32], Nowacki [33] and some other re-
searchers have developed the present known micropolar theory (MPT).
MPT is a size-dependent field theory including the microstructure ef-
fect. Based on this theory, at each material point of the continuum, a
microstructure is considered which is rigid and can rotate in-
dependently from the neighbouring medium [34]. Accordingly, each
material particle of micropolar continua has six degrees of freedom
(DOF) including three translational and three rotational ones. This is

while, nine extra DOFs consists of micro-rotations, micro-stretches and
micro-shears are considered in the micromorphic theory (MMT)
[35–39]. In fact, contrary to the assumption of rigid deformations in
MPT, micro-motions of MMT are described by three deformable vec-
tors, i.e. directors. MPT can be used for both fluids [40] and elastic
solids [41]. A literature survey shows that this theory has been used for
different materials such as granular materials [42], heterogeneous
materials [43–45] and biomaterials [46,47] as well as in the context of
size-dependent analysis of small-scaled structures [48–51].

There are several papers on the mechanical behavior of structures
using MPT. Herein, some of them are cited. Anderson [52] studied the
forced vibration characteristics of elastic bodies based on MPT. Using
the finite element method (FEM), the bending behavior of micropolar
elastic plates was investigated in [53,54]. Zhang et al. [55] analyzed
the multi-body contact of micropolar materials. Pompei and Rigano
[56] addressed the bending problem of micropolar viscoelastic plates.
Sargsyan and Sargsyan [50] studied the dynamic bending of isotropic
micropolar elastic thin plates with independent fields of displacements
and rotations.

Since the governing equations of non-classical continuum models
are mathematically complex, conducting analytical solution approaches
for them may be impossible or difficult in many cases (e.g. see [57,58]).
Hence, introducing numerical tools in this field can be of great im-
portance. Among different numerical techniques, FEM has the potential
to be efficiently used in the field of micro- and nano-mechanics
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[59–66]. However, the conventional elements of FEM are not suitable
for predicting the size-dependent behavior of materials as they are
based on the classical continuum mechanics. In this respect, some at-
tempts have been made to develop size-dependent elements including
the effects of micro- and nano-scale. Recently, Ansari et al. [67] pro-
posed a non-classical Timoshenko beam element within the framework
of Mindlin's strain gradient theory. In comparison with the classical
Timoshenko beam element, their developed element needs two addi-
tional nodal DOFs including derivatives of lateral translation and ro-
tation, which means a total of 4 DOFs per node. It was indicated that
the new element is able to predict the bending and vibration responses
of microbeams under different types of end conditions with considering
strain gradient effects.

In the current paper, based upon MPT, a non-classical element is
developed to investigate the free vibration behavior of microbeams and
microplates with various kinds of boundary conditions. The proposed
element can capture the microstructure effect through considering the
micro-rotation of material particles. Also, it is three-dimensional and
can be applied to different micropolar elastic bodies. In order to de-
velop the element, the micropolar elasticity is formulated in a new and
general way. The matrix representation of relations is given which is
appropriate for the finite element modeling. Selected numerical results
are presented to study the microstructure effect on the vibration be-
havior of microbeams and microplates.

2. Formulation of micropolar theory

If ̃σ and ∼μ denote the stress and couple stress tensors, respectively,
the governing equations of motion of a micropolar continuum are for-
mulated as [41,68]

̃ + = + − =∼ρ ρ ρ ρjσ f u μ m ϵ σ ϕdiv( ) ̈ , div( ) : ̈ (1)

whose indicial representations in the context of Cartesian coordinate
system are given by

+ = + − =σ ρf ρu μ ρm σ ρjϕ̈ , ϵ ̈ij j i i ij j i ijk jk i, , (2)

in which f and m respectively stand for the body force and body
couple; u and ϕ are the displacement and micro-rotation vectors and ϵ
shows the permutation symbol. Also, ρ and j denote the mass density
and micro-inertia, respectively. As it was expressed earlier, the rigid
micro-deformation vector ϕ is the simplified director in the micropolar
elasticity theory.

The following linear micro-strain tensors are defined [16,48]
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to write the strain energy density for a linear elastic solid as [68]
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where the classical Lame coefficients are denoted by λ, μ; and α, β, γ , κ
are some material constants of micropolar materials.

As a result, the stress and couple stress tensors are obtained as
[15,16,68]
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Thus, one can have [68]

̃ ̃ ̃ ̃ ̃ ̃ ̃= + + = + +∼λ μ κ α β γσ e I e ε μ η I η ηtr( ) 2 , tr( ) T (6)

in which I is the identity tensor and ̃e denotes the classical linear strain
that is expressed as
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Detailed information about material constants can be found in
Section 4.

Since micro-strain tensors of Eq. (3) are un-symmetric, the stress
and couple stress tensors of Eq. (6) are un-symmetric too, which in the
Cartesian coordinate system are given by

= + + = + +σ λe δ μe κε μ αη δ βη γη2 ,ij kk ij ij ij ij kk ij ji ij (9)

Using the following definition [48]

= +e ε ε1
2

( )ij ij ji (10)

Fig. 1. Cubic micropolar element.

Fig. 2. Schematic view of discretized 3D micropolar (a) beam and (b) plate.
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