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A B S T R A C T

Wave propagation in viscoelastic single walled carbon nanotubes is investigated by accounting for the si-
multaneous effects of the nonlocal constant and the material length scale parameter. To this end, thin shell
theory is used to model the viscoelastic single walled carbon nanotubes, and the nonlocal strain gradient theory
is used to account for the effects of the nonlocal constant and the material length scale parameter. The
Kelvin–Voigt model is used to model the viscoelastic property, and the governing equations are derived through
Hamilton’s principle. The viscoelastic single walled carbon nanotube medium is modeled as visco-Pasternak. The
results demonstrate that viscoelastic single walled carbon nanotube rigidity is higher in the strain gradient
theory and lower in the nonlocal theory in comparison to that in the classical theory. Also, the size effects,
nanotube radius, circumferential wavenumber, nanotube damping coefficient, and foundation damping coeffi-
cient exert considerable effects on viscoelastic single walled carbon nanotube phase velocity.

1. Introduction

Carbon nanotubes (CNTs) were discovered by Iijima [1] in 1991 and
quickly attracted attention in various research areas, such as me-
chanics, electronics, and medicine. The distinctive mechanical proper-
ties of these single walled carbon nanotubes (SWCNTs), including high
tensile strength and low density, led to their extensive engineering
application in the field of mechanics. To make better use of these na-
nostructures, it is imperative to identify their mechanical and dynamic
properties. Instruments used to predict the dynamic behavior of
SWCNTs include the molecular dynamics (MD) method as well as ex-
perimental methods. However, due to the costliness and complexity of
these methods, the highly efficient nonclassical theories are used in-
stead.

Due to the inefficiency of the classical continuum theory in accu-
rately predicting the mechanical properties and dynamic behavior of
micro/nanostructures with minute dimensions, continuum theories
accounting for the length scale parameter and the nonlocal parameter
are used to study these structures. In recent years, numerous studies
have attempted to investigate the size effects using various theories in
tackling various problems. To account for size effects, those studies
have used the material length scale parameter in higher order con-
tinuum theories [2–28]and the nonlocal constant in the nonlocal theory
[29–50].

The size-dependency of the mechanical properties of micro/nanos-
tructures as well as the substantial effect of the size parameter on these
properties in the nanoscale has given considerable appeal to the higher
order continuum theories in recent years, since these theories in-
corporate the material length scale parameter into the study of micro/
nanostructures. In higher order continuum theories, strain energy is
dependent on strain as well as strain variation [51–54]. Mindlin re-
wrote the higher order stress theory which incorporates the higher
order strain gradient [55]. He rewrote the equations for center-sym-
metric isotropic objects, in which case strain energy has five linear
elastic constants incorporating the material length scale parameters.
Aifantis simplified Mindlin’s strain gradient theory by using one ma-
terial length scale parameter rather than five [56].

In the nonlocal theory, stress at the reference point is dependent not
only on strain at the reference point but also on strain at other points in
the object. This theory predicts rigidity to be lower. Many researchers
have used the nonlocal theory to investigate the behavior of nanos-
tructures. For instance, Ansari et al. computed the nonlocal constant for
double-walled carbon nanotubes (DWCNTs) using the MD method.
They investigated the vibration of DWCNTs using the shell theory [57].
Hu et al. computed the vibration of SWCNTs using the nonlocal theory
and determined the size effect of SWCNTs by comparing their results to
the MD results [58]. Ansari and Sahmani examined the vibration of
SWCNTs using the MD method and the beam model and determined the
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nonlocal constant for those SWCNTs using the nonlocal theory [59]. Hu
et al. investigated wave propagation in SWCNTs and DWCNTs. They
accounted for the nonlocal constant of the carbon nanotube using the
nonlocal theory and computed the value of the nonlocal constant for
the two types of carbon nanotubes by comparing their results to the MD
results [60].

Zenkour and Sobhy investigated the thermal buckling of a nanoplate
using the nonlocal theory. They placed the nanoplate on a Pasternak
foundation and investigated the effect of the nonlocal constant, foun-
dation stiffness, and aspect ratio on nanoplate buckling [61]. Sobhy and
Radwan investigated the vibration and buckling of FGM nanoplates by
considering the thermal effects. They used the new quasi-3D hyperbolic
plate theory to model the plates and employed the nonlocal theory to
account the size effects. They demonstrated that an increase in mode
number is accompanied by a increase in natural frequency, and a de-
crease in power law index, aspect ratio and nonlocal parameter is ac-
companied by an increase in natural frequency [62].

Today, considering the greater precision of calculation in 3-D space,
many researchers are interested in investigating the dynamic behavior
of micro- and nano-structures using the shell theory. By way of ex-
ample, Ansari et al. investigated nanotube vibration using the Donnell
shell theory and accounted for the size effect using the nonlocal theory.
Furthermore, they compared the results of the shell model with those of
the beam model, demonstrating that the natural frequencies in the
latter are greater than those in the former, which is due to the presence
of the circumferential mode [63]. Ghorbanpourarani et al. investigated
the transverse vibration of a single-walled nanotube and a double-
walled nanotube using the beam and cylindrical shell models. They
used the Timoshenko and Euler-Bernoulli models as beam models and
the Donnell shell theory as the shell model, demonstrating that the
frequencies in the cylindrical shell model are smaller than those in the
two beam models, which is due to the three-dimensional quality of the
cylindrical shell model [64].

As demonstrated by the above-mentioned facts, the nonlocal and
higher order continuum theories offer opposite predictions of the
physical and mechanical behaviors of micro/nanostructures, and many
studies have examined the simultaneous impacts of nonlocal constant
and material length scale parameter on wave propagation in viscoe-
lastic nanostructures. During deformation, viscoelastic materials exhibit
both elastic and viscose behaviors. They are used for noise damping and
shock absorption. The elastic modules are modeled as spring and the
viscose modules are modeled as dampers. Tang et al. investigated wave
propagation in viscoelastic SWCNTs. They used the Timoshenko beam
to model the SWCNTs and the nonlocal strain gradient theory to ac-
count for size effects. They examined the impacts of wavenumber,
SWCNT radius, nonlocal constant, material length scale parameter, and
damping constant on phase velocity and damping ratio [65]. Ebrahimi
and Barati investigated wave propagation in a heterogeneous viscoe-
lastic nanobeam using the nonlocal strain gradient theory. They used
the Euler-Bernoulli beam to model the SWCNT and demonstrated that
variation of wavenumber, nonlocal constant, and material length scale
exerts a considerable impact on SWCNT phase velocity [66]. Tang et al.
studied the effect of material length scale parameter and nonlocal
constant on wave propagation in viscoelastic SWCNTs using the non-
local strain gradient theory, demonstrating that the damping constant,
Winkler constant, and SWCNT diameter exert a considerable impact on
SWCNT phase velocity [67]. Ebrahimi and Barati investigated wave
propagation in an FGM thermoelastic nanoplate using the nonlocal
strain gradient theory, showing that variation of temperature, wave-
number, nonlocal constant, and material length scale parameter exerts
a remarkable impact on the phase velocity of the FGM nanoplate [68].
Using the nonlocal strain gradient theory, Li et al. examined wave
propagation in a viscoelastic SWCNT subjected to a magnetic field and
incorporated the surface effects into the model. They investigated the
effect of the nonlocal constant, material length scale parameter, mag-
netic field, and damping constant on phase velocity and damping ratio

[69]. Using the nonlocal strain gradient theory, Li and Hu investigated
wave propagation in fluid-conveying viscoelastic SWCNTs, demon-
strating that the effects of the nonlocal constant, material length scale
parameter, fluid velocity, and damping ratio on phase velocity and
damping ratio are considerable [70].

According to the foregoing discussion, sufficient attempts have yet
to be made to investigate the effects of the length scale and nonlocal
constant on viscoelastic SWCNTs using the cylindrical shell model. For
this reason, in the present study, wave propagation in cylindrical vis-
coelastic SWCNTs is investigated using the nonlocal strain gradient
theory. To this end, the thin shell theory is employed. The classical
governing equations are derived using Hamilton’s principle. The
Kelvin–Voigt model is used to model the viscoelasticity, and the SWCNT
is surrounded by a medium of viscoelastic foundation. To validate the
results, wave propagation of a SWCNT is compared with that obtained
through the MD method by Ref. [60]. In the Results section, the impacts
of the nonlocal constant, material length scale parameter, damping
constant, circumferential wavenumber, and radius on phase velocity in
viscoelastic SWCNTs are investigated.

2. Governing equation of problem

2.1. Classical formulation

The strain energy for a linear elastic material in infinitesimal de-
formation is expressed as:
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In the above equations,σij, εij,Ui and Cijkl represent the Cauchy stress
tensor, small strain tensor, displacement vector, and fourth order
elasticity tensor, respectively. Considering plane stress assumption in
the cylindrical shell theory and isotropic materials, stress-strain rela-
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In the Eqs. (4) and (5), g, G, E and ν are the viscous damping
coefficient, shear modulus, Young’s modulus, and Poisson’s ratio, re-
spectively.

According to the thin shell theory, the displacement components of
the viscoelastic SWCNT can be expressed as
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where u, v and w represent displacement vectors in the middle plane of
viscoelastic SWCNT which are along the x, θ and z axes, respectively.
Also t represents time (Fig. 1).

By substituting Eq. (6) in Eq. (2), the components of classical strain
are obtained as follows
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