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Despite advances in sequencing candidate genes and whole genomes, no method has accurately predicted who
will or will not benefit from a specific antipsychotic medication among patients with schizophrenia.We propose
a computational algorithm that utilizes a person-centered approach that directly identifies individual patients
who will respond to a specific antipsychotic medication. The algorithm was applied to the data obtained from
the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. The predictors were either (1) 13
single-nucleotide polymorphisms (SNPs) and 53 baseline variables or (2) 25 SNPs and the same 53 baseline var-
iables, depending on the existing findings and data availability. The outcome variables were either (1) improve-
ment in the Positive and Negative Syndrome Scale (PANSS) (Yes/No) or (2) completion of phase 1/1A (Yes/No).
Each of those four predictor-outcome combinationswas tried for each of the five antipsychoticmedications (Per-
phenazine, Olanzapine, Quetiapine, Risperidone, and Ziprasidone), leading to 20 prediction experiments. For 18
out of 20 experiments, all three performance measures were greater than 0.50 (sensitivity 0.51–0.79, specificity
0.52–0.79, accuracy 0.52–0.74). Notably, the model provided a promising prediction for Ziprasidone for the case
involving completion of phase 1/1A (Yes/No) predicted by 13 SNPs and 53 baseline variables (sensitivity 0.75,
specificity 0.74, accuracy 0.74). The proposed algorithm simultaneously used both genetic information and clin-
ical profiles to predict individual patients' response to antipsychotic medications. As the method is not disease-
specific but a general algorithm, it can be easily adopted in many other clinical practices for personalized
medicine.
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1. Introduction

The success of personalized medicine requires diagnostic tests that
can identify patients who will benefit from targeted treatments
(Hamburg and Collins, 2010). However, heterogeneous etiologies of
schizophrenia result in high variations in response to a given treatment
(Clark et al., 2011; Fanous and Kendler, 2005; Kennedy et al., 2003);
schizophrenia is highly heterogeneous in efficacy and liability to side ef-
fects of antipsychotics (Pouget et al., 2014). One crucial source of vari-
ability in medication response is genetic factors, providing the
impetus for applied pharmacogenetics in the selection and treatment
regimen for antipsychotic agents in schizophrenia (Adkins et al., 2013;
McClay et al., 2011; Need et al., 2009; Pouget et al., 2014; Zhang and

Malhotra, 2011). Although existing studies provide clinical evidence of
potentiallymeaningful prediction, the actual prediction for antipsychot-
ic medication efficacy is still suboptimal due to a surfeit of limitations,
especially small to modest effect sizes with respect to influencing clini-
cal outcomes (McClay et al., 2011; Motsinger-Reif et al., 2013; Zhang
and Malhotra, 2011). Polygenic risk scores (PRSs) were introduced to
incorporatemultiple geneswith small effect sizes and showed potential
to explain some variance of the case-control study for the risk of schizo-
phrenia. However, there is still insufficient support for using PRSs in
predicting individual predisposition of schizophrenia or personalized
effectiveness of antipsychotics (Schizophrenia Working Group of the
Psychiatric Genomics Consortium, 2014; The International
Schizophrenia Consortium, 2009; Vassos et al., 2017).

In this paper we propose a computational algorithm to predict the
effectiveness of antipsychoticmedications for patients with schizophre-
nia. The algorithm directly predicts health outcomes of a specific anti-
psychotic for individual patients, by simultaneously utilizing multiple
predictors including genotypes of single-nucleotide polymorphisms
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(SNPs) as well as demographic and clinical profiles. Our algorithm
aligns with a person-centered approach as opposed to a more typical
variable-centered approach.

The variable-centered approach starts from an assumption that the
population is homogeneous, so that the persons in the same population
are viewed as replaceable data points (von Eye and Bogat, 2006). Many
conventional statistical methods belong to the variable-centered ap-
proach. For example, regression analysis identifies statistically signifi-
cant variables that contribute “on average” to the treatment
effectiveness for the most representative patient. Although it is useful
in finding important predictors (e.g., PRSs) that could affect the re-
sponse variable, it is less useful in predicting an individual patient's re-
sponse, especially when the population responses are highly
heterogeneous, as is the case for patients with schizophrenia. Another
disadvantage of using the variable-centered approach is that it typically
estimates only themain effects of the predictor variableswhile failing to
capture interactions and nonlinear relationships in them (Bauer and
Shanahan, 2007).

On the other hand, the person-centered approach (e.g., cluster anal-
ysis, latent class analysis, finite mixture modeling) in social and behav-
ioral sciences assumes that the members of the population are not
homogeneous because development and structure of human behavior
are not universal but unique to individual persons or groups of individ-
ual persons (von Eye and Bogat, 2006). A person-centered approach
therefore has several advantages over a variable-centered approach.
First, since persons are classified into empiricallymeaningful subgroups,
confounding or spurious relationships among variables do not pose an-
alytical problems. Second, the classifications of persons derived from
analyses can be directly generalized to other groups of people with sim-
ilar characteristics. Lastly, the person-centered approach is able to in-
clude all cases even if they are outliers (Everitt et al., 2011). We
applied the person-centered approach to the personalized medicine in
schizophrenia to overcome the weakness of the variable-centered ap-
proachmentioned above. For example, our proposed algorithm is capa-
ble of incorporating the correlations and interactions between predictor
variables in predicting individual medication effectiveness. The person-
centered approach we used properly models complex interactions and
confounding relationships among variables (Bauer and Shanahan,
2007).

2. Methods

2.1. Algorithm

Lee et al. (2014) developed a computational algorithm, called Latent
Group Effectiveness Modeling (LGEM), and this predictive modeling
successfully identified persons who would truly benefit from the moti-
vational enhancement therapy among patients with substance abuse
problems, using patients' sociodemographic and clinical profiles. In
the present study we used the analytic approach of LGEM in developing
a more generalized and improved algorithm to incorporate patients'
genotypes as well as sociodemographic and clinical profiles. Follow-
ing themain concepts of LGEM, wemay identify two subgroups of in-
dividuals in the treatment group, the one (G) with relatively good
outcomes and the other (P) with relatively poor outcomes (See Fig.
1-A). Then, we may compare two of the observed groups, G and P,
in order to identify the characteristics of individuals who might
have derived benefits directly from the treatment. However, by itself
this method does not provide robust identification of true beneficia-
ries from the treatment among the individuals in the treatment
group.

As presented in Fig. 1-B, the LGEM approach does allow further clas-
sification as follows. In addition to distinguishing between individuals
in the treatment group with good and poor outcomes, it allows the
group G (good outcome) to be further broken down into two unob-
served subgroups: (1) a group GE (good outcome, effective) of the

individuals who attained good outcomes probably because the treat-
ment was effective for them and (2) a group GI (good outcome, ineffec-
tive) of the individuals who initially attained good outcomes probably
because of chance or some other reasons, but whose response to the
treatment condition subsequently might have deteriorated. In short,
the treatment for group GE is likely to be genuinely effective while the
treatment for group GI may actually be as ineffective as for group P.
Then, groups GI and P together make the group I (ineffective) against
E (effective), as presented in Fig. 1-B.

By advancing onemore step as presented in Fig. 1-C, the LGEM revi-
sion employed in this paper breaks down group P (poor outcome) into
two unobserved subgroups: (1) a group PE (poor outcome, effective) of
the individuals who had poor outcomes probably because of chance or
some other reasons although the treatmentwas supposed to be effective
for them and (2) PI (poor outcome, ineffective) of the individuals who
attained poor outcomes probably because the treatment was ineffective.
In short, the treatment for group PI is likely to be genuinely ineffective
while the treatment for group PE may actually be as effective as for
group G. Then, groups PE and G together make the group E (effective)
against I (ineffective), as presented in Fig. 1-C.

The main idea of our modeling is removing possibly uninformative
“noise” groups (GI and PE) in order to obtain the genuinely informative
reference groups: GE (purely effective) in Fig. 1-B and PI (purely ineffec-
tive) in Fig. 1-C. Then, those identified “pure” groups (GE and PI) will be
used as reference groups in predicting whowill or will not receive ben-
efits from a specific treatment.

The actual decomposition can be done using a variety of techniques
available in cluster analysis. Cluster analysis covers a wide range of nu-
merical methods that summarize data with a small number of sub-
groups or clusters; that is, the clustering procedures generate groups
of objects that resemble each other in the same cluster and that are dif-
ferent from the objects in other clusters (Everitt et al., 2011). In the pres-
ent instance, we used a classical clustering algorithm called the
partitioning around medoids (PAM) algorithm (Kaufman and
Rousseeuw, 2008) as in Lee et al. (2014). A medoid is the object
whose absolute distance is minimal to the other members of the cluster
(Everitt et al., 2011), so it is the most representative member in the
group. Although the k-means algorithm is more frequently used due
to its computational simplicity, it is more sensitive to statistical noise
and outliers, and in principle it is not suitable for categorical data
(Theodoridis and Koutroumbas, 2008). PAM is more robust to noise
and outliers, and it can appropriately handle categorical data, which
are very common in clinical trials. Also, our algorithm used not only
the most representative member of the group (i.e., medoid, called m1

here) but also possibly the second most representative member of the
group (i.e., the object with the second least absolute distance to other
members of the cluster, called m2 here), the third most representative
member of the group (i.e., the object with the third least absolute dis-
tance to other members of the cluster, called m3 here), and so on. For
the distance measure in our proposed algorithm, we used the dissimi-
larity measure of Gower (1971) because it can handle both continuous
and categorical variables simultaneously and it is capable of calculating
the distancemeasure regardless of the presence of missing values. Each
SNP used in computing the Gower dissimilarity measure was regarded
as a categorical variable with three possible values: DD, Dd, or dd,
where D is the major allele and d is the minor allele.

The algorithm to identify the members of group GE is as follows.
Step 1: Find the rmost representative members [m1

G,m2
G,…,mr

G] for
group G, then set them to be [m1

E, m2
E, …, mr

E] for group E, as in Fig. 1-B.
Likewise, find the r most representative members [m1

P, m2
P, …, mr

P] for
group P, then set them to be [m1

I , m2
I , …, mr

I] for group I, as in Fig. 1-B.
Step 2: Relocate the individuals in group G to either group E or I by

comparing each individual's mean distances to [m1
E, m2

E, …, mr
E] and

[m1
I , m2

I , …, mr
I].

Step 3: Find new sets of [m1
E,m2

E,…,mr
E] and [m1

I ,m2
I ,…,mr

I] based on
the newly assembled E and I.

2 B.S. Lee et al. / Schizophrenia Research xxx (2017) xxx–xxx

Please cite this article as: Lee, B.S., et al., A computational algorithm for personalized medicine in schizophrenia, Schizophr. Res. (2017), http://
dx.doi.org/10.1016/j.schres.2017.05.001

http://dx.doi.org/10.1016/j.schres.2017.05.001
http://dx.doi.org/10.1016/j.schres.2017.05.001


Download English Version:

https://daneshyari.com/en/article/6821911

Download Persian Version:

https://daneshyari.com/article/6821911

Daneshyari.com

https://daneshyari.com/en/article/6821911
https://daneshyari.com/article/6821911
https://daneshyari.com

