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Our objectivewas to assess the generalizability, across sites and cognitive contexts, of schizophrenia classification
based on functional brain connectivity.We tested different training-test scenarios combining fMRI data from 191
schizophrenia patients and 191 matched healthy controls obtained at 6 scanning sites and under different task
conditions. Diagnosis classification accuracy generalized well to a novel site and cognitive context provided
data frommultiple sites were used for classifier training. By contrast, lower classification accuracy was achieved
when data from a single distinct site was used for training. These findings indicate that it is beneficial to usemul-
tisite data to train fMRI-based classifiers intended for large-scale use in the clinical realm.
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1. Introduction

Psychiatrists and other mental health professionals could benefit in
the not-so-far future from neuroimaging-based classification tools to as-
sist diagnosis and prognosis in mental illness (Huys et al., 2016). Recent
developments in the neuroimaging field have led to a shift from group
comparisons based on averaging across subjects to machine learning
techniques making prediction at the individual level (Dubois and
Adolphs, 2016). In this approach, the emphasis is put on the ability of
an algorithm to classify individuals into clinical categories with good
generalizability to unseen subjects. Over the last decade, hundreds of
studies have successfully classified various psychiatric and neurological
disorders based on in vivo brain imaging (reviewed in Arbabshirani et
al., 2017; Wolfers et al., 2015). For instance, Arbabshirani et al. (2017)
identified 30 published studies that distinguished schizophrenia patients
from healthy controls with an average accuracy of 83% using functional
magnetic resonance imaging (fMRI), either under task or rest states.

To date, however, the vast majority of classification works in mental
illness were performed in a research context, using data from single
sites of acquisition. Such findings may not generalize to large-scale clin-
ical settings, with patients being scanned at widely-spread sites and
possibly under various mental states. In most cases, the performance
of classifiers was only assessed for unseen, test subjects with the exact
same characteristics as the sample used for training. Yet, using gender
as a proof-of-concept target variable, there was initial evidence that
classifiers only poorly generalize to data drawn from other site samples
(Huf et al., 2014). The inclusion of data frommultiple sites during train-
ing improved the classifier performance for data of unseen sites.

In schizophrenia, a study pooling fMRI data from two distinct scan-
ning sites reported similar prediction accuracy levels irrespective of
whether test data were drawn from the dataset used for training or
not, thus suggesting good generalizability (Skåtun et al., 2016). Howev-
er, this result appears at odds with a recent fMRI study in autism that
showed poorer accuracy for inter-site than intra-site training/test con-
figurations, depending on the ratio of training set used (Abraham et
al., 2017). In the case of inter-site testing, data pooled from 4 sites
were used for training the classifier, which was tested on data from a
fifth site. Yet, none of these two studies specifically evaluated whether
using multisite training data could compensate to some extent for the
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deleterious effect of inter-site testing, by assuming the actual presence
of such aneffect. In thepresentwork,we sought to address this question
based on fMRI brain connectivity in schizophrenia. Since it is impossible
to completely control the variations in mental states in realistic clinical
situations, we further promoted the complexity of the classification
problem by including data obtained in distinct cognitive task conditions
across sites. Mass univariate findings have indicated that cognitive state
does not further impact on the nature of functional brain connectivity
alterations in schizophrenia (Kaufmann et al., 2017; Orban et al.,
2017). However, the potential influence of cognitive context on classifi-
cation performance in a multivariate analysis should not be rejected.

2. Methods

2.1. Datasets

Brain imaging data from 6 independent studies were obtained
through either the SchizConnect and OpenfMRI data sharing platforms
(http://schizconnect.org; https://openfmri.org) or local scanning
(Çetin et al., 2014; Gollub et al., 2013; Kogan et al., 2016; Orban et al.,
2017; Poldrack et al., 2016; Wang et al., 2016). The 6 datasets differed
in terms of both scanning site and cognitive context during fMRI data
acquisition (resting-state, emotional memory, Sternberg item recogni-
tion paradigm, N-back, task-switching and oddball tasks). Classification
analyses included fMRI data from 382 subjects, 191 patients diagnosed
with schizophrenia and 191 healthy controls. Subjects provided in-
formed consent to participate in their respective studies and ethics ap-
proval was obtained at the site of secondary analysis (Centre de
Recherche de l'Institut Universitaire de Gériatrie deMontréal, Montréal,
Canada).

2.2. Subjects matching

Sample size differed between sites (N = 84, 82, 70, 62, 50 and 34).
Site samples were obtained after subjects were selected in order to en-
sure even proportions of schizophrenia patients and controls within
each site (N = 42, 41, 35, 31, 25 and 17 subjects per group) and to re-
duce between-group differences with regards to gender ratio (75% vs
73% males in controls vs. schizophrenia patients), age distribution
(32.3 ± 9.8 vs. 33.4 ± 9.5 years old) and motion levels (average frame
displacement = 0.15 ± 0.05 vs 0.17 ± 0.06, see Data preprocessing).
Matching of schizophrenia and control subjects was achieved based
on propensity scores, using the Optmatch R library version 0.9-7
(https://cran.r-project.org/web/packages/optmatch/index.html). The
propensity score associated with each participant was defined by the
conditional probability of being in the clinical or control group given
the confounding covariates (gender, age andmotion). Propensity scores
were then used to balance those covariates in the two groups. Although
we took great care inmatching participantswith respect to these factors
of no interest, it is very likely that other confounds such asmedication in
schizophrenia patients impacted the reported findings.

2.3. Data preprocessing

Brain imaging data preprocessing and extraction of functional brain
connectomes were performed with the NeuroImaging Analysis Kit ver-
sion 0.12.17 (NIAK, http://niak.simexp-lab.org). Briefly, preprocessing
included slice timing correction, estimation of rigid-bodymotionwithin
the functional runs, nonlinear coregistration of the structural scan in
stereotaxic space, individual coregistration between structural and
functional scans, resampling of the functional scans at 3 mm isotropic
resolution in stereotaxic space, scrubbing of volumes with excessive
motion (frame displacement greater N0.5mm), regression of confounds
(slow time drifts, average of conservative white matter and cerebrospi-
nal fluid masks and motion parameters), and smoothing of functional
volumes with a 6 mm isotropic Gaussian blurring kernel. A detailed

description of the preprocessing pipeline can be found at http://niak.
simexp-lab.org/pipe_preprocessing.html.

Individual functional connectomes included 2016 functional con-
nections between 64 brain parcels. The functional brain parcellation
was previously obtained by conducting a bootstrap analysis of stable
clusters (BASC, Bellec et al., 2010) on an independent fMRI dataset of
200 healthy young subjects (https://doi.org/10.6084/m9.figshare.
1285615.v1). In each schizophrenia or control participant, the time se-
ries of a brain parcel consisted in the average of the voxel signals in
the parcel. Connectivity measures between pairs of parcels were de-
fined by Pearson product-moment correlation coefficients. Individual
connectomes were parcel by parcel (64 × 64) symmetrical matrices
that summarized connectivity levels in the whole brain. Lower triangu-
larmatrices were then vectorized for all subjects in order to form a sub-
ject by connections (382 × 2016) matrix.

2.4. Data analysis

Classification analyses were performed with a linear support vector
machine (SVM) algorithm, as implemented in the SciKit-Learn python
library version 0.18.1 (Abraham et al., 2014). The SVM classifier, a su-
pervised classification algorithm, represented subjects as points in
space, mapped so that the subjects of the separate clinical labels were
divided by a clear gap (called a margin) that was as wide as possible.
The hyperparameter C of the SVM was optimized using nested cross-
validation. Each model used the residuals from a regression of con-
founding variables (gender, age andmotion parameters) across connec-
tions estimated from the subjects selected for training the model. The
evaluation metrics were computed using four main values, namely the
number of true and false positive (TP, FP) as well as true and false neg-
atives (TN, FN). Sensitivity was defined as TP / (TP + FN), specificity as
TN / (TN + FP) and accuracy as (TP + TN) / (TP + FP + TP+ FN). The
main analyses evaluated the impact on classification accuracy of the
number of site(s) (1, 2, 3, 4 or 5) included in the training set. We evalu-
ated this impact in situations where the test set included only subjects
from the same site(s) used during training (intra-site test with 10-fold
cross validation) or, alternatively, situations where the test set included
only subjects from sites not used during training (inter-site test with
“leave-site-out” cross validation). Cross validation ensured that the sub-
jects used for training were never used in the test phase.

The statistical significance of changes in accuracy levels as a function
of the number of sites used for training and whether data used for test-
ingwere drawn from the samedataset(s) used for training (intra-site vs
inter-site) was assessed with binary logistic regressions using the GLM
function in R version 3.2.5. These analyses relied on the prediction of
categorical outcomes (hit/miss data) based on predictor variables
(number of sites used for training, intra-site vs inter-site). Significance
threshold in the different contrasts was set at p b 0.05.

Complementary analyses were conducted. First, we explored differ-
ences in whole brain connectivity between schizophrenia patients and
controls using mass univariate statistics for the various training site
combinations. Similarly for multivariate classification analyses, we ex-
tracted featureweights separately for all site combinations.We then ex-
amined the level of correspondence across site combinations for both
univariate and multivariate analyses. Second, we aimed at demonstrat-
ing the presence of multivariate site effects on functional brain connec-
tivity. To this end,we determined accuracy levels for the classification of
scanning sites by performing separate SVM analyses for all pairs of sites,
using 10-fold cross validation as in the main analyses.

3. Results

3.1. Correspondence across site combinations

We first report patterns of functional brain dysconnectivity in
schizophrenia patients based on mass univariate statistics. For the
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