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In many knowledge representation formalisms, a constructive semantics is defined based 
on sequential applications of rules or of a semantic operator. These constructions often 
share the property that rule applications must be delayed until it is safe to do so: until it is 
known that the condition that triggers the rule will continue to hold. This intuition occurs 
for instance in the well-founded semantics of logic programs and in autoepistemic logic. 
In this paper, we formally define the safety criterion algebraically. We study properties 
of so-called safe inductions and apply our theory to logic programming and autoepistemic 
logic. For the latter, we show that safe inductions manage to capture the intended meaning 
of a class of theories on which all classical constructive semantics fail.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

In many fields of computational logic, natural forms of induction show up. Such an induction can be seen as a sequence 
of semantic structures obtained by iterative applications of rules or a semantic operator. For instance, in logic programming, 
it is natural to think of sequences of interpretations where at each stage a number of rules whose bodies are satisfied are 
triggered (i.e., their head is added to the current interpretation). For positive logic programs, all such sequences converge to 
the minimal model. For non-positive programs, this strategy may yield meaningless results. For instance, for the program

P =
{

a
b ← ¬a

}
,

one such sequence is

✩ A short version of this paper was published in the proceedings of the IJCAI’17 conference [6]. This paper extends the previous work with more 
theoretical results, examples, proofs of all propositions and applications of the work to argumentation frameworks.
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N1 = ∅, {b}, {b,a},
the limit of which is not even a supported model of the logic program. On the other hand, the sequence

N2 = ∅, {a}
is another such sequence that does end in the intended model of P , namely its perfect model. Intuitively, what is wrong 
with N1 is that the rule b ← ¬a is applied too soon, before the value of a is established. For stratified programs, like P , 
this problem has been resolved, e.g., by Apt et al. [2]. For the general case, the well-founded semantics [33] offers a solution 
that uses three-valued interpretations instead of two-valued interpretations.

In recent work, the notions of natural and safe inductions for inductive definitions were introduced [15,16]. It was argued 
that this kind of process forms the essence of our understanding of inductive definitions.

In this paper, we lift those ideas of safe and natural inductions to a more general setting: we provide a principled study 
of such inductions in the context of approximation fixpoint theory (AFT) (Denecker, Marek and Truszczyński (DMT) [10]), 
an algebraic theory that provides a unifying framework of semantics of nonmonotonic logics. We show convergence of 
safe inductions in this general setting and study the relationship between (algebraic) safe inductions and various fixpoints 
defined in approximation fixpoint theory.

By presenting our theory in AFT, our results are broadly applicable. DMT [10] originally developed AFT to unify seman-
tics of logic programs [32], autoepistemic logic [26] and default logic [28]. Later, it was also used to define semantics of 
extensions of logic programs, such as HEX logic programs [1] and an integration of logic programs with description log-
ics [23]. Strass [30] showed that many semantics for Dung’s argumentation frameworks (AFs) [17] and abstract dialectical 
frameworks (ADFs) [7] can be obtained by direct application of AFT. Bogaerts and Cruz-Filipe [3] showed that AFT has 
applications in database theory, for defining semantics of active integrity constraints [19].

The theory we present in this paper induces for each of the above logics notions of (safe) inductions and a safe semantics. 
Our complexity results are obtained for general operators and hence can also be transferred to various logics of interest. 
Throughout the paper, we give examples from logic programming.

In Section 7, we apply our theory to autoepistemic logic. There we show that safe inductions induce a constructive 
semantics that captures the intended semantics of a class of theories for which classical constructive semantics fail. This 
failure was recently exposed and solved using a notion of set-inductions which is based on sets of lattice elements instead 
of intervals (which are standard in AFT) [5]. We show that safe inductions provide an alternative solution to this problem. 
Our solution is more direct: in contrast to set-inductions or well-founded inductions [14], safe inductions do not require 
any form of approximation; they are sequences in the original lattice. For logic programming, this means that they are 
sequences of interpretations such that some atoms are derived in each step. For AEL, this means that they are sequences of 
possible world structures such that additional knowledge is derived in each step.

In Section 8, we apply our theory to Dung’s argumentation frameworks [17], where we show the surprising result that 
two different operators that exist for a given argumentation framework have the same safely defined point. Furthermore, 
this point corresponds to an existing semantics: it is the so-called grounded extension.

The rest of this paper is structured as follows. In Section 2, we give preliminaries regarding lattices and operators. In 
Section 3, we define (safe) inductions and provide some basic results. We continue by studying complexity of some inference 
problems related to safe inductions in Section 4. In Section 5, we recall the basics of AFT; we use this in Section 6 to study 
how (safe) inductions relate to various fixpoints studied in AFT. Afterwards, in Sections 7 and 8, we apply our general theory 
to autoepistemic logic and argumentation frameworks respectively. We conclude in Section 9.

2. Preliminaries: lattices and operators

A partially ordered set (poset) 〈L, ≤〉 is a set L equipped with a partial order ≤, i.e., a reflexive, antisymmetric, transitive 
relation. We write x < y for x ≤ y ∧ x 	= y. If S is a subset of L, then x is an upper bound, respectively a lower bound of S if 
for every s ∈ S , it holds that s ≤ x, respectively x ≤ s. An element x is a least upper bound, respectively greatest lower bound
of S if it is an upper bound that is smaller than every other upper bound, respectively a lower bound that is greater than 
every other lower bound. If S has a least upper bound, respectively a greatest lower bound, we denote it lub(S), respectively 
glb(S). As is custom, we sometimes call a greatest lower bound a meet, and a least upper bound a join and use the related 
notations 

∧
S = glb(S), x ∧ y = glb({x, y}), 

∨
S = lub(S) and x ∨ y = lub({x, y}). We call 〈L, ≤〉 a complete lattice if every 

subset S of L has a least upper bound and a greatest lower bound. A complete lattice has a least element ⊥ and a greatest 
element .

An operator O  : L → L is monotone if x ≤ y implies that O (x) ≤ O (y) and anti-monotone if x ≤ y implies that O (y) ≤
O (x). An element x ∈ L is a prefixpoint, a fixpoint, a postfixpoint of O if O (x) ≤ x, respectively O (x) = x, x ≤ O (x). Every 
monotone operator O in a complete lattice has a least fixpoint [31], denoted lfp(O ), which is also O ’s least prefixpoint and 
the limit of any terminal monotone induction of O , defined below.

Definition 2.1. A monotone induction of a lattice operator O  : L → L is an increasing sequence (for some ordinal β) (xi)i≤β of 
elements xi ∈ L satisfying
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