
Cognitive Deep Neural Networks prediction method
for software fault tendency module based on

Bound Particle Swarm Optimization

Wang Geng

School of Computer Science, Hubei University of Technology, Wuhan 430068, China

Received 15 May 2018; received in revised form 29 May 2018; accepted 2 June 2018
Available online 8 June 2018

Abstract

Identification of module fault tendency is greatly important for cost reduction and software development effectiveness. A DNN (Deep
Neural Networks) prediction method for software fault tendency module based on BPSO (Bound Particle Swarm Optimization) dimen-
sionality reduction was proposed in the paper. Firstly, the calculation framework of the DNN prediction algorithm for software fault
tendency module based on BPSO dimensionality reduction and 21 software fault measurement indexes as well as the normalization pro-
cessing method of these index values were provided in the paper; then, the particle swarm optimization algorithm was adopted for the
dimensionality reduction of software fault data set, and the particle position was represented by binary (0 or 1) character string to sim-
plify data processing; then, the DNN algorithm was adopted to predict software fault tendency module; finally, the simulation experi-
ments were implemented in four standard test sets—PC1, JM1, KC1 and KC3 to verify the performance advantage of the algorithm.
� 2018 Elsevier B.V. All rights reserved.

Keywords: Particle swarm optimization algorithm; Software fault; Deep neural network; Dimensionality reduction; Bound

1. Introduction

At present, software plays an important role in various
fields, and software testing is regarded as a basic task of
software development (Chan, Zhang, & Uhrich, 2015).
Relevant research shows that most faults usually only
occur in several software modules, so people only need to
concern several software fault tendency modules.

The software fault tendency prediction method at early
period is based on statistics, and the prediction perfor-
mance is dissatisfactory. Recently, the machine learning
technologies, including data mining, Naive Bayesian algo-
rithm, DNN, fuzzy logic, etc. (Ghebrebrhan et al., 2017;
Malarkodi et al., 2013), have been introduced. Although

the software fault is researched in these technologies, yet
the data dimensionality is not reduced in above algorithms
during fault data set processing, so these algorithms have
excessively high calculation complexity, especially in large
software projects. The DNN prediction model adopted in
the paper also has the problem of long calculation time
for massive data analysis. The most common dimensional-
ity method used in software engineering is the principal
component analysis (PCA). For example, in literature
(Stephygraph & Arunkumar, 2016), on the basis of PCA
method for software fault data for dimensionality reduc-
tion, SVM (support vector machine) was adopted for the
statistical analysis of the data and ant colony algorithm
was adopted for optimizing the parameters of the SVM
algorithm; in literature (Ghebrebrhan et al., 2017), simi-
larly on the basis of PCA method for software fault data

https://doi.org/10.1016/j.cogsys.2018.06.001
1389-0417/� 2018 Elsevier B.V. All rights reserved.

E-mail address: shanshando9@163.com

www.elsevier.com/locate/cogsys

Available online at www.sciencedirect.com

ScienceDirect

Cognitive Systems Research 52 (2018) 12–20

https://doi.org/10.1016/j.cogsys.2018.06.001
mailto:shanshando9@163.com
https://doi.org/10.1016/j.cogsys.2018.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cogsys.2018.06.001&domain=pdf


for dimensionality reduction, a two-stage fault prediction
technology was designed. However, PCA has a disadvan-
tage that opposite to the original input variable, the deriva-
tive dimensionality may not have intuitional explanation.
The other common dimensionality reduction method is
PLS (Partial Least Squares). At present, PLS has wide
application in dimensionality reduction field. For example,
in literature (Kurup et al., 2017), the least square algorithm
was adopted for software fault data for dimensionality
reduction, and the artificial neural network was adopted
for the statistical analysis of the data; in literature
(Arunkumar et al., 2017), the least square algorithm was
also adopted for software fault data for dimensionality
reduction and for the statistical analysis of the fault distri-
bution units of the complex software system, etc. There are
many similar literatures, but the classical PLS implementa-
tion process is based on nonlinear iteration, and original
sample data usually need to be assumed or converted for
convenient use of traditional estimation methods. In prac-
tical conditions, original sample data may be influenced by
various factors such as operating environment, testing
strategy and resource allocation. Therefore, it is difficult
to meet such hypotheses in practical problems.

Compared with traditional algorithm, the paper has fol-
lowing innovations: (1) particle swarm data dimensionality
reduction algorithm is introduced for software fault data
for improving data execution efficiency and reducing test-
ing process influence; (2) in order to improve data dimen-
sionality reduction effect, a bound particle swarm
optimization algorithm is proposed to replace traditional
particle swarm algorithm; position and velocity of original
particle swarm optimization algorithm are replaced by
wave function to improve data dimensionality effect.

2. Model method and software index

2.1. Model method

DNN (Zhang et al., 2016) is a learning algorithm struc-
ture formed by adding multiple hidden web-based learning
units between output and input network layers. The hidden
layers have fewer nodes than the input layer of the encoder
and the output layer of the decoder. Meanwhile, the
second-order optimization method is introduced to realize
DNNs network training. The DNN structure is as shown
in Fig. 1a.

The DNN with dual-hidden-layer network is adopted in
the paper. Specifically, field theory is introduced into the
traditional particle swarm optimization algorithm as
the searching method for ensuring global convergence
(Arunkumar & Mohamed Sirajudeen, 2011;
Ashokkumar, Arunkumar, & Don, 2018; Hussein).
Therefore, BPSO algorithm is adopted for dimensionality
reduction. By the combination of hybrid deep neural net-
work algorithm and particle swarm optimization algo-
rithm, an effective software defect prediction method was

proposed in the paper. The prediction method is as shown
in the block diagram in Fig. 1b.

2.2. Software measurement index

At present, software indexes are used in most research
for identifying the fault tendency module. Relevant
research shows that software indexes are very useful for
fault tendency prediction (Sarvaghad-Moghaddam et al.,
2018). Specifically, McCabe, Butler, Halstead criterions,
etc. (Arunkumar & Mohamed Sirajudeen, 2011;
Ashokkumar et al., 2018) are used in the paper. The
selected indexes include code line, circulation complexity,
basic complexity, design complexity, etc., and are described
in Table 1. In the experiment of the paper, the software
fault tendency of each software module is represented by
21 indexes.

2.3. Preprocessing process

For DNN algorithm, a data set ðxðiÞ; yðiÞÞ ði ¼
1; 2; . . . ; qÞ is preset, wherein xðiÞ 2 Rd is the vector of the
software index value for quantifying the index value of
the ith class, and q is the total number of the data samples.
The output value of the ith expectation of the output nerve

cell is yðiÞ, value ‘‘1” for corresponding breakpoint tendency
and ‘‘0” for corresponding non-breakpoint tendency. For
DNN training, each input is normalized into the same
interval number, which is favorable for improving the
training process behaviors and ensuring the equal impor-
tance of each initial input. Notably, the upper limit of
the software index is usually unlimited in the value range
thereof. For standardization, it is necessary to obtain the
upper and lower limits of the software index value range.
For specific data set and software index, we can obtain
each index value according to the data set. Each index
value is provided in each data set, so it is easy to obtain
the maximum value and the minimum value.

Fig. 1. DNN structure and algorithm framework.

W. Geng /Cognitive Systems Research 52 (2018) 12–20 13



Download English Version:

https://daneshyari.com/en/article/6853670

Download Persian Version:

https://daneshyari.com/article/6853670

Daneshyari.com

https://daneshyari.com/en/article/6853670
https://daneshyari.com/article/6853670
https://daneshyari.com

