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Abstract

Discovering the governing equations for a measured system is the gold standard for modeling, predicting, and understanding complex
dynamic systems. Very complex systems, such as human minds, pose stark challenges to this mode of explanation, especially in ecological
tasks. Finding such “equations of mind” is sometimes difficult, if impossible. We introduce recent directions in data science to infer dif-
ferential equations directly from data. To illustrate this approach, the simple but elegant example of sparse identification of nonlinear
dynamics (SINDy; Brunton, Proctor, & Kutz, 2016) is used. We showcase this method on known systems: the logistic map, the Lorenz
system, and a bistable attractor model of human choice behavior. We describe some of SINDy’s limitations, and offer future directions
for this data science approach to cognitive dynamics, including how such methods may be used to explore social dynamics.
� 2018 Elsevier B.V. All rights reserved.

1. Introduction

Differential equations define the time evolution of a
dynamical system. Their precision inspires some to see such
mathematical formulation as critical to scientific under-
standing. This perspective on differential equations found
prominent expression in the dynamical systems approach
to cognition of the 1990s (Port & Van Gelder, 1995; Van
Gelder, 1995), and was the subject of vigorous debate
(Bechtel, 1998; Eliasmith, 1996): “Dynamical systems gov-
erned by differential equations are a particularly interesting
and important subcategory, not least because of their cen-
tral role in the history of science.” (Van Gelder, 1995, p.
368) Simon (1992) famously expressed an even stronger
position, arguing that cognitive explanation is founded

on “difference equations” which characterize much cogni-
tive systems research still:

“For systems that change through time, explanation takes
the form of laws acting on the current state of the system
to produce a new state – endlessly. Such explanations can
be formalized with differential or difference equations. A
properly programmed computer can be used to explain the
behavior of the dynamic system that it simulates. Theories
can be stated as computer programs.” (Simon, 1992, p. 160)

Nowadays this mode of mathematical description and
explanation permanently inhabits many realms of cognitive
science.1 It was well established even before this recent
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1 A reviewer helpfully pointed out that description and explanation
should not be confounded, and that equations alone rarely fulfill our
conventional notions of “explaining” systems. For simplicity, we do not
distinguish between these modes of scientific inquiry – describing and
explaining – but assume that differential equations are considered, by a
great many, to be important for both.
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debate. From the firing of single nerve cells (Hodgkin &
Huxley, 1952) and the control of an entire physical body
(Beek, Turvey, & Schmidt, 1992; Kugler, Kelso, &
Turvey, 1980) to multi-agent models (Richardson et al.,
2016), systems of differential equations have long captured
a wide variety of psychological phenomena. When we have
a set of differential equations for a system, we can predict
its time evolution, understand its controlling variables,
and identify how system variables interact. These dynamic
equations can also participate with other forms of cognitive
explanation, such as mechanistic explanations of how a
cognitive architecture is composed of various particular
parts and their interactions (Kaplan & Bechtel, 2011).

Despite their power, differential equations are not
always easy to identify. Identification of governing equa-
tions can involve an interacting cycle of mathematical
invention and empirical tinkering. Guided by intuition, a
scientist can happen upon a formulation that generates a
covering law (Hempel, 1966). Consequences of this cover-
ing law can be explored to consider other formulae in other
domains of application. The literature on this is deep and
colorful, and excellent reviews of the philosophy and his-
tory of science abound (Brush, 1974; Hempel, 1966;
Hirsch, 1984; Kuhn, 1962).

Cognitive scientists continue to study and model this
psychological process of identifying scientific generaliza-
tions and natural law (Addis, Sozou, Lane, & Gobet,
2016; Klahr & Simon, 1999; Langley, 1987). A complemen-
tary approach, made possible by computational tools of the
day, is to use data and algorithms together to automatically
recover dynamical laws. This is what we consider here in
this paper. There is an emerging domain, growing rapidly
with the advent of data science and machine learning, to
precisely recover differential equations from raw data. This
offers considerable potential to researchers interested in the
dynamics of socio-cognitive systems. It may be possible to
use these tools for new and explicit descriptions of system
dynamics, even when the data are noisy, and especially
when there are plenty of data to be found (a common cir-
cumstance these days: Paxton & Griffiths, 2017).

There has been considerable prior work on equation dis-
covery. Motivated by the same points we raise above,
researchers over the past two decades have explored differ-
ent frameworks for automatic recovery of governing equa-
tions. Below we first briefly review this past work through
influential examples. After this, we introduce a recent sim-
ple and elegant formulation of equation discovery (SINDy;
Brunton, Proctor, & Kutz, 2016). Based only on transfor-
mation of time series data, and simple sparse regression,
a researcher can recover equations for their measured sys-
tems. In some simple cases, these equations may reflect a
full reconstruction of a system’s underlying dynamics.
More complex cases present other challenges, but in these
more complex situations SINDy may still be useful. Below,
we introduce SINDy and then showcase how it works on a
number of example systems. We also outline its key limita-
tions. After this, we summarize a few outstanding issues in

these domains, including how SINDy and related methods
could be expanded in the future to help recover governing
equations of social systems.

1.1. Some background

There has been considerable prior work on equation dis-
covery. Classic work in cognitive science itself can be found
in Langley (1981), who used symbolic cognitive models to
infer equations from data. His early model, BACON.3, is
meant to capture some important aspects of human scien-
tific activity. More recently, Langley and colleagues
(Langley, Sanchez, Todorovski, & Dzeroski, 2002) have
also used time series data in an Inductive Process Modeler
that can fix certain parameters on population dynamics
models. These general approaches fall under the rubric of
symbolic machine learning, as a kind of heuristic search.
For example, process models of biological systems can
include a space of parameters that describe the relationship
among variables (Džeroski & Todorovski, 2008). A heuris-
tic search navigates this parameter space under certain con-
straints to best fit a set of data.

Crutchfield, Shalizi, and others have developed a hidden
Markov approach that generates a directed graph that rep-
resents a theory of a system from a time series of its behav-
ior (Crutchfield, 1994, 2011; Shalizi & Crutchfield, 2001;
Shalizi & Shalizi, 2004). This framework finds transitions
between system states in coarse-grained representation of
the time series. The result is a kind of compact theory
which can describe the time evolution of the system. It also
provides descriptive measures of the system, such as its
computational complexity. This modeling framework can
be used to simulate the relationship between measurement
level and theory, and can be likened to a cognitive agent
seeking to explain and model a system’s dynamics
(Crutchfield, 1994; Dale & Vinson, 2013).

There are many related techniques, both in cognitive
science and in other realms of the physical sciences. An
excellent review can be found in Sozou, Lane, Addis, and
Gobet (2017). Much work used clever analysis of time ser-
ies with assumed form of laws to recover particular systems
(Bezruchko, Karavaev, Ponomarenko, & Prokhorov, 2001;
Bünner, Meyer, Kittel, & Parisi, 1997; Crutchfield &
McNamara, 1987; Smith, 1992).

With the advent of large matrix libraries, advanced
regression methods are now possible. Schmidt and
Lipson (2009) use symbolic regression and motion tracking
of physical systems to derive various equations of motion.
Example systems included chaotic systems, such as double
pendula. Their approach involves extraction of motion
time series, and then seeking invariances (correlation struc-
ture) among the measured variables according to candidate
symbolic functions. The symbolic functions are found via a
search through a space of candidates, generated randomly
and gradually winnowed down based on best fit (see their
Fig. 2). This method is closely related to the one we
showcase below, with the primary difference that in SINDy
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