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a b s t r a c t

This paper addresses the problem of deriving a policy from the value function in the context of critic-only
reinforcement learning (RL) in continuous state and action spaces. With continuous-valued states, RL algorithms
have to rely on a numerical approximator to represent the value function. Numerical approximation due to its
nature virtually always exhibits artifacts which damage the overall performance of the controlled system. In
addition, when continuous-valued action is used, the most common approach is to discretize the action space
and exhaustively search for the action that maximizes the right-hand side of the Bellman equation. Such a policy
derivation procedure is computationally involved and results in steady-state error due to the lack of continuity.
In this work, we propose policy derivation methods which alleviate the above problems by means of action space
refinement, continuous approximation, and post-processing of the V-function by using symbolic regression. The
proposed methods are tested on nonlinear control problems: 1-DOF and 2-DOF pendulum swing-up problems,
and on magnetic manipulation. The results show significantly improved performance in terms of cumulative
return and computational complexity.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement Learning (RL) algorithms provide a way to solve
dynamic decision-making and control problems (Sutton and Barto,
1998; Polydoros and Nalpantidis, 2017; Kuvayev and Sutton, 1996). An
RL agent interacts with the system to be controlled by measuring its
states and applying actions according to a certain policy. After applying
an action, the agent receives a scalar reward related to the immediate
performance. The goal is to find an optimal policy, which maximizes the
cumulative reward.

The available RL algorithms can be broadly classified into critic-
only, actor-only, and actor-critic methods (Konda and Tsitsiklis, 2000).
Critic-only methods first find the value function (V-function) and then
derive an optimal policy from this value function. In contrast, actor-only
methods search directly in the policy space. The two approaches can
be combined into actor-critic architectures, where the actor and critic
are both represented explicitly and trained simultaneously. Each class
can be further divided into model-based and model-free algorithms. In
the model-based scenario, a system model is used during learning or
policy derivation. The system model may be stochastic or deterministic.
In this paper, we consider the critic-only, model-based and deterministic
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variant of RL in continuous state and action spaces. For the methods
developed, it is irrelevant whether the system model is available a priori
or learnt online.

We address the policy derivation step, assuming that an approxi-
mation of the true unknown V-function has already been computed.
Policy derivation can be understood as a hill climbing process: at each
time step, the agent searches for the control input that leads to a state
with a highest value given by the right-hand side (RHS) of the Bellman
equation. An advantage of this control law is its inherent stability—the
value function is analogous to the control Lyapunov function (Lewis et
al., 2012; Primbs et al., 1999). However, direct policy derivation from
the V-function suffers from several problems:

∙ Computational inefficiency. The most common approach to
dealing with a continuous action space is to discretize it into
a small number of actions, compute the value of the Bellman
equation RHS for all of them, and select the one that corresponds
to the largest value (Sutton and Barto, 1998; Bertsekas, 2011).
The number of possible discrete actions grows exponentially with
the dimension of the action space and so does the computational
complexity of this method.
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Fig. 1. A sample state trajectory obtained by simulating the pendulum swing-up task (see Section 5 for details). The bottom plots show an enlarged view of the areas indicated in
the upper plots. The wiggly state trajectory (superimposed on the contours of the Bellman equation RHS) and the extremely slow convergence to the desired position result from the
insufficient smoothness of the V-function approximation in combination with the use of discrete actions.

∙ Insufficient smoothness of the V-function. The above hill-
climbing process is adversely affected by the approximate nature
of the V-function, which has been observed e.g. in (Alibekov et
al., 2016b). A typical approximation by means of basis functions
exhibits artifacts which can lead to oscillations, as illustrated
in the left column of Fig. 1. We refer to this problem by the
term ‘‘insufficient smoothness’’, without relying on the exact
mathematical definition of smoothness.

∙ Discrete-valued control input. The use of discrete actions
leads in combination with insufficient smoothness to steady-state
errors, as shown in the right column of Fig. 1. In the long run,
the steady-state error can induce big losses in terms of the overall
performance.

The aim of this paper is to alleviate the above problems. We
extend our earlier work on policy derivation methods (Alibekov et al.,
2016a). In addition to the methods originally proposed in this paper
we introduce symbolic regression to address the V-function smoothness
problem. Additionally, to enable the use of continuous actions, we
propose a method based on a computationally efficient optimization
technique.

The paper is organized as follows. Related work is discussed in Sec-
tion 2 and Section 3 reviews the necessary background of reinforcement
learning. The proposed policy derivation methods are introduced in
Section 4. The results obtained on several benchmark problems are
presented in Section 5 and discussed in detail in Section 6. Finally,
Section 7 concludes the paper.

2. Related work

The problem of deriving policies for continuous state and action
spaces in critic-only methods has not been sufficiently addressed in the
literature. The most common approach is to discretize the action space,
compute the RHS of the Bellman equation for all the discrete actions,
and select the action that corresponds to the largest value. One of the
earliest references to this approach is (Santamaria et al., 1996). The
drawbacks of this method were discussed in the previous section.

Another similar approach is based on sampling (Sallans and Hinton,
2004; Kimura, 2007). Using Monte Carlo estimation, this approach
can find a near-optimal action without resorting to exhaustive search
over the discretized action space. However, for a good performance,
this method requires a large number of samples and therefore it is
computationally inefficient.

An alternative method would be policy interpolation (Busoniu et al.,
2010), which is based on computing the control actions off-line for a pre-
selected set of states and then interpolating these actions online. While
computationally less involved, this method does not give any closed-
loop stability guarantees and can suffer from severe interpolation errors,
especially in constrained problems. Therefore, we do not consider policy
interpolation in this paper.

A different approach relies on translating the continuous action
selection step into a sequence of binary decisions (Pazis and Lagoudakis,
2009, 2011). Each decision whether to decrease or increase the control
action eliminates a part of the action space. This process stops once a
predefined precision is reached. There are two main drawbacks of this
approach: it requires a binary code representation of each action, which
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