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a b s t r a c t

Nonnegative Matrix Factorization (NMF) is an effective algorithm for dimensionality reduction and feature ex-
traction in data mining and computer vision. It incorporates the nonnegativity constraints into the factorization,
and thus obtains a parts-based representation. However, the existing NMF variants cannot fully utilize the limited
label information and neglect the unlabeled sample diversity. Therefore, we propose a novel NMF method, called
Graph Regularized Nonnegative Matrix Factorization with Sample Diversity (GNMFSD), which make use of the
label information and sample diversity to facilitate the representation learning. Specifically, it firstly incorporates
a graph regularization term that encode the intrinsic geometrical information. Moreover, two reconstruction
regularization terms based on labeled samples and virtual samples are also presented, which potentially improve
the new representations to be more discriminative and effective. The iterative updating optimization scheme
is developed to solve the objective function of GNMFSD and the convergence of our scheme is also proven.
The experiment results on standard image databases verify the effectiveness of our proposed method in image
clustering.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Matrix factorization is a useful tool for data representation as well
as dimensionality reduction, and various matrix factorization based
algorithms have been well studied. Perhaps, most well known ma-
trix factorization based algorithms are Principal Component Analysis
(PCA) (Jolliffe, 1989), Independent Component Analysis (Hyvarinen
and Oja, 2000), Linear Discriminant Analysis (LDA) (Belhumeur et
al., 1997), Local Linear Embedding (LLE) (Chen and Liu, 2011), and
Nonnegative Matrix Factorization (NMF) (Lee and Seung, 1999). These
methods aim to learn a compact low-dimensional representation of
original data for further applications.

NMF is an unsupervised and effective analysis algorithm due to its
theoretical interpretation and desired performance (Wang and Zhang,
2013). It aims to find a linear approximation to the original matrix by
basis matrix and coefficient feature matrix, and simultaneously enforces
the elements in both basis vectors and representation coefficients to be
nonnegative. This constraint allows NMF with additive combination to
approximation to the original data which accords with the cognitive
process of human brain (Wachsmuth et al., 1994; Logothetis and
Sheinberg, 1996). Thus, NMF and its variants have been widely used in
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different real-world applications, such as audiovisual document struc-
turing (Essid and Fevotte, 2013), hyperspectral image analysis (Gillis
and Plemmons, 2013), graph matching problem (Jiang et al., 2014),
maintenance activities identification (Feng et al., 2016), face recogni-
tion (Zhi et al., 2011; Chen et al., 2016), data clustering (Li et al., 2014;
Lu and Miao, 2016), etc. A comprehensive review about the theoretical
research of NMF can be found in Wang and Zhang (2013).

Despite NMF has solid mathematical theory foundations and encour-
aging performances, it still have some limitations including neglecting
intrinsic geometric structure of the data and lacking discriminative
information for clustering. Recently, several variants of NMF have
been proposed to improve the performance. Graph Regularized NMF
(GNMF) (Cai et al., 2011) utilizes the Laplacian graph as a regulariza-
tion term to exploit the locality property of the data. Dual GNMF (Shang
et al., 2012) and Multiple GNMF (Wang et al., 2013) have been
proposed by adding more constraints to the original objective function.
To use the supervised information, Constrained NMF (CNMF) (Liu
et al., 2011) encodes label information into NMF to make the data
points share the same label in the new representation process. However,
this constraint ignores the local geometrical structure of data set.
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Furthermore, Graph Regularized and Sparse NMF with hard Constraints
(GSNMFC) (Sun et al., 2016) integrates the geometrical structure and
label information as well as sparse constraint in a joint framework.
However, in GSNMFC, the unlabeled data are not fully utilized due to no
constraints on them, and the sparsity constraint leads the intrasample
structure information to be ignored during the learning process (Lu and
Miao, 2016). Therefore, it is necessary to establish a semi-supervised
framework for NMF which can fully utilize the label information and
the diversity of unlabeled data simultaneously.

In this paper, we propose a novel NMF method, called Graph
Regularized Nonnegative Matrix Factorization with Sample Diversity
(GNMFSD), which adds three constraint conditions to ensure the effec-
tiveness of the obtained representations. Our algorithm is motivated by
recent study on dictionary learning, and particularly, sample diversity
learning proposed by Xu et al. (2017). In our method, we incorporate
label information into the graph to encode the intrinsic geometrical
structures of the data space, and linear regression term based on the
labeled samples to promote the discriminant power of the learned
basis vectors. Furthermore, sample diversity term is used to try to
obtain more effective representations of unlabeled data. By combining
these three constraints with the graph-based regularizer, we expect to
fully utilize the unlabeled data and the limited label information to
improve the clustering performance. In addition, we discuss how to
solve the corresponding optimization problem, and theoretically prove
that our objective function is nonincreasing under the corresponding
update rules. Finally, we conduct extensive experiments to validate the
effectiveness of our GNMFSD method. The main contributions of this
paper are summarized as follows:

1. The proposed GNMFSD method do not only take the diversity of
unlabeled samples into account, but also characterize both the
underlying local geometrical information and the global discrim-
inative information of the samples with additional regularization
terms. Hence, the learned effective representations have more
discriminating power for the data representation, which could
improve the performance on clustering accuracy and normalized
mutual information.

2. The updating rules to solve the objective function and the con-
vergence proof are provided. Experiments on the real databases
are conducted to demonstrate the algorithm effectiveness quan-
titatively.

The rest of this paper is organized as follows. Section 2 reviews the
related works including NMF, GNMF, CNMF. In Section 3, we introduce
our proposed algorithm, as well as the optimization scheme and con-
vergence study. Experimental results are presented for illustration in
Section 4 and Section 5 concludes this paper.

2. Related work

In this section, we briefly discuss the important algorithms which
are relevant to our work, including NMF (Lee and Seung, 1999), Graph
Regularized NMF (GNMF) (Cai et al., 2011) and Constrained NMF
(CNMF) (Liu et al., 2011).

2.1. NMF

Nonnegative matrix factorization (NMF) is linear model that learns
a part-based representation of the data. it aims to find two nonnegative
matrices 𝑈 ∈ R𝑚×𝑘 and 𝑉 ∈ R𝑛×𝑘 to approximate the original data
matrix 𝑋 = [𝑥1,… , 𝑥𝑛] ∈ R𝑚×𝑛:

𝑋 ≈ 𝑈𝑉 𝑇 . (1)

In the above representation, 𝑈 can be considered as a set of basis
vectors and 𝑉 as the representation of each sample with respect to these

basis vectors. In order to measure the quality of the decomposition, the
Euclidean distance based objective function is expressed as:

min
𝑈,𝑉

‖𝑋 − 𝑈𝑉 𝑇
‖

2
𝐹

s.t. 𝑈 ≥ 0, 𝑉 ≥ 0 (2)

where ‖ ⋅ ‖𝐹 denotes the matrix Frobenius norm.
Because the objective function is not convex in both 𝑈 and 𝑉 , it is

difficult to obtain the global minimum of the objective function. Lee
and Seung (1999) provided update rules to obtain a local minimum and
proved its convergence. The update rules for the objective function are
given as:

𝑢𝑖𝑘 ← 𝑢𝑖𝑘
(𝑋𝑉 )𝑖𝑘

(𝑈𝑉 𝑇 𝑉 )𝑖𝑘
, 𝑣𝑗𝑘 ← 𝑣𝑗𝑘

(𝑋𝑇𝑈 )𝑗𝑘
(𝑉 𝑈𝑇𝑈 )𝑗𝑘

. (3)

The iterative update procedure is executed repeatedly to decrease
the approximation error, and final 𝑈 and 𝑉 are obtained when the given
terminal condition is met. By NMF, each data point 𝑥𝑖 is approximated
by a linear combination of the columns of 𝑈 , weighted by the 𝑖th column
of 𝑉 . The NMF has achieved good results in many practical applications
due to its effectiveness and simple to implement.

2.2. GNMF

As aforementioned, NMF learns a part-based representation in Eu-
clidean space, but it neglects the intrinsic geometric structure of the
original data. In order to preserve this inherent structure information
during the matrix decomposition, Cai et al. (2011) proposed a Graph
Regularized Nonnegative Matrix Factorization (GNMF) algorithm. In
GNMF, a nearest-neighbor graph is constructed to preserve the geomet-
rical structure of data space, and the objective function of GNMF can be
formulated as below:

min
𝑈,𝑉

‖𝑋 − 𝑈𝑉 𝑇
‖

2
𝐹 + 𝜆𝑇 𝑟(𝑉 𝑇𝐿𝑉 )

s.t. 𝑈 ≥ 0, 𝑉 ≥ 0 (4)

where 𝐿 = 𝐷−𝑊 is Laplacian matrix, 𝑊 is the weight matrix to measure
the similarity between the nearby data points, 𝐷 is a diagonal matrix
whose entries are column (or row) sums of 𝑊 , 𝐷𝑗𝑗 =

∑

𝑙𝑊𝑗𝑙. The 𝜆 is
a regularization parameter which balance the reconstruction error and
manifold term. The update rules to solve (4) are given below:

𝑢𝑖𝑘 ← 𝑢𝑖𝑘
(𝑋𝑉 )𝑖𝑘

(𝑈𝑉 𝑇 𝑉 )𝑖𝑘
, 𝑣𝑗𝑘 ← 𝑣𝑗𝑘

(𝑋𝑇𝑈 + 𝜆𝑊 𝑉 )𝑗𝑘
(𝑉 𝑈𝑇𝑈 + 𝜆𝐷𝑉 )𝑗𝑘

. (5)

With the local manifold learning in GNMF, the nearby data points
are encouraged to be as close as possible in the new data space.

2.3. CNMF

In order to take advantage of the partial labeled data, CNMF (Liu
et al., 2011) introduces a label constraint matrix 𝐴 and takes the label
information of data into account. Suppose there are 𝑐 classes, the first 𝑙
data points 𝑥1,… , 𝑥𝑙 are labeled, and the rest of the 𝑛 − 𝑙 data points
𝑥𝑙+1,… , 𝑥𝑛 are unlabeled. The 𝑙 × 𝑐 indicator matrix 𝐶 is defined as
below:

𝑐𝑖𝑗 =
{

1, if 𝑥𝑖 is labeled with the 𝑗th class
0, otherwise. (6)

With the indicator matrix 𝐶, the label constraint matrix 𝐴 can be
defined as below:

𝐴 =
[

𝐶𝑙×𝑐 0
0 𝐼𝑛−𝑙

]

(7)

where 𝐼𝑛−𝑙 is an (𝑛 − 𝑙) × (𝑛 − 𝑙) identity matrix. With the introduced
matrices, the original data 𝑋 is approximated as 𝑋 ≈ 𝑈𝑉 𝑇 = 𝑈 (𝐴𝑍)𝑇 .
The indicator matrix 𝐶 means that if samples 𝑖 and 𝑗 have the same
label, then their weighted coefficient vector are also same. The CNMF
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