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a b s t r a c t

Multi-fidelity modeling (MFM) frameworks, especially the Bayesian MFM, have gained popularity in simulation
based modeling, uncertainty quantification and optimization, due to the potential for reducing computational
budget. In the view of multi-output modeling, the MFM approximates the high-/low-fidelity outputs simultane-
ously by considering the output correlations, and particularly, it transfers knowledge from the inexpensive low-
fidelity outputs that have many training points to enhance the modeling of the expensive high-fidelity output that
has a few training points. This article presents a novel multi-fidelity Gaussian process for modeling with diverse
data structures. The diverse data structures mainly refer to the diversity of high-fidelity sample distributions,
i.e., the high-fidelity points may randomly fill the domain, or more challengingly, they may cluster in some
subregions. The proposed multi-fidelity model is composed of a global trend term and a local residual term.
Particularly, the flexible residual term extracts both the shared and output-specific residual information via a
data-driven weight parameter. Numerical experiments on two synthetic examples, an aircraft example and a
stochastic incompressible flow example reveal that this very promising Bayesian MFM approach is capable of
effectively extracting the low-fidelity information for facilitating the modeling of the high-fidelity output using
diverse data structures.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, new advances in computers and computing science
lead to the widespread use of computer simulation models, e.g., com-
putational fluid dynamics (CFD) and finite element analysis (FEA), in
engineering design and optimization. In simulation based engineering
problems, surrogates are starting to play an important role, since they
can approximate the expensive simulation model at some training points
for alleviating computational burden. Gaussian process regression (Ras-
mussen and Williams, 2006), also known as Kriging (Lophaven et al.,
2002), is a widely used surrogate model, since it can provide not only
the prediction response but also the related prediction variance.

This article focuses on a multi-fidelity scenario where the simulator
for the physics-based problem of interests can be run at multiple levels
of fidelity. The high fidelity (HF) simulator yields the most accurate
predictions but is most time-consuming; whereas the fast low fidelity
(LF) simulators provide coarse predictions, which however include
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the main features of the problem and thus are useful for preliminary
exploration. The LF simulators are usually simplified analysis models
by using coarse finite element meshes, relaxed boundary or convergence
conditions, etc. For example, it was reported by Benamara et al. (2016)
that the HF simulation for a 1.5 stage booster has 5 million meshes
and requires 2 h; but the LF simulation has only 0.7 million meshes
and requires only 15 min. In practice, we cannot afford extensive
HF simulations at many training points but many LF simulations are
affordable. Suppose that the simulator has Q levels of fidelity, the multi-
fidelity modeling (MFM), also known as variable-fidelity modeling or
data fusion, attempts to utilize the knowledge from the correlated yet
inexpensive𝑄−1 LF simulators to enhance the modeling of the expensive
HF simulator.

Considering 𝑄 levels of fidelity as 𝑄 correlated outputs, the infor-
mation fusion can be achieved in the multi-output modeling frame-
work. The multi-output GP (MOGP), also known as multi-variate Krig-
ing (Kleijnen and Mehdad, 2014), has been developed and investigated
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with a long history. The MOGP attempts to model multiple correlated
outputs simultaneously by sharing the information across them, with
the aim of outperforming individual modeling. The key in MOGP is
to construct a valid multi-output covariance function to transfer useful
information across outputs. A pioneer and well-known model developed
in the field of geostatistics is called linear model of coregionalization
(LMC) (Journel and Huijbregts, 1978). This model constructs valid
covariance functions by a linear combination of several Gaussian pro-
cesses. Thereafter, various MOGPs have been developed and extended
in the context of LMC (Seeger et al., 2005; Bonilla et al., 2007; Hayashi
et al., 2012; Osborne et al., 2012; Rakitsch et al., 2013; Dürichen et
al., 2015; Hori et al., 2016). Another way to construct valid covariance
functions is through process convolutions that convolve a base process,
e.g., white Gaussian noise, with a smoothing kernel (Ver Hoef and
Barry, 1998; Boyle and Frean, 2004; Álvarez and Lawrence, 2009,
2011).1 The process convolutions can be regarded as a dynamic version
of LMC (Álvarez and Lawrence, 2011; Álvarez et al., 2012).

In the multi-fidelity scenario, particularly, we attempt to use the
inexpensive LF outputs to assist the modeling of the expensive HF out-
put. Hence, compared to the typical MOGPs that share the information
across the outputs, Kennedy and O’Hagan (2000) presented a Bayesian
discrepancy-based MFM framework, which is an extension to the Co-
Kriging model (Myers, 1982). In this framework, an auto-regressive
model is proposed by expressing the HF output as the sum of the scaled
LF outputs and an additive term that accounts for the discrepancy
between the outputs, leading to not only the information sharing across
outputs but also the asymmetric knowledge transfer from the LF outputs
to the HF output. Later, Qian and Wu (2008) and Leen et al. (2012)
provided an equivalent MFM framework in different views. Being a
good multi-fidelity predictive model, Co-Kriging has been extended and
improved, e.g., by reducing computational complexity (Le Gratiet and
Garnier, 2014; Le Gratiet and Cannamela, 2015), using space-dependent
scaling factor (Perdikaris et al., 2017), and incorporating gradient infor-
mation (Han et al., 2013; Ulaganathan et al., 2015). Due to the remark-
able performance, Co-Kriging has gained popularity in various fields,
e.g., model inversion (Perdikaris and Karniadakis, 2016), uncertainty
quantification (Perdikaris et al., 2015; Kennedy and O’Hagan, 2001),
and multidisciplinary/robust/multi-objective optimization (Forrester et
al., 2007; Keane, 2012; Han and Görtz, 2012; Kontogiannis et al., 2017).
For more information about Co-Kriging and MFM, one can refer to the
recent reviews and comparison studies (Fernández-Godino et al., 2016;
Park et al., 2017; Toal, 2015).

In the context of Co-Kriging, it is usually assumed that we can control
the sampling process such that the HF and LF training points spread
over the entire domain evenly by for example the nested sampling strat-
egy (Qian, 2009) and the nearest neighbor sampling strategy (Le Gratiet
and Garnier, 2014). The space-filling nested data structure, though
being beneficial for Co-Kriging, cannot always be available in practice.
In realistic scenarios, we need to handle diverse data structures. The
diverse data structures here mainly refer to the diversity of HF sample
distributions, while the inexpensive LF outputs are assumed to have
sufficient training points that cover the entire domain. For example,
as shown in Fig. 1,2 we have a set of uniformly distributed HF points,
a set of randomly distributed HF points, and more challengingly, a set
of partially distributed HF points clustered in a subregion. Besides, a
practical example is that when using CFD solvers of different fidelities to
simulate the flow around an aircraft, the inexpensive LF Euler simulation
can be computed over the domain; while for saving computing time,
the expensive HF Navier–Stokes simulation is only performed in flow
regions with strong viscous effects. Hence, the diverse data structures,
which contain different HF sample distributions, pose the demands

1 If the base process is a Gaussian process, then the convolved process is ensured to be
a Gaussian process.

2 The HF and LF functions in this 1D multi-fidelity example are expressed by Eqs. (45)
and (46), respectively.

of developing a particular multi-fidelity modeling approach that can
effectively extract LF information to facilitate the HF modeling in
different scenarios.

Therefore, this article presents a novel multi-fidelity GP model that
is composed of a global trend term and a local residual term in order
to tackle diverse data structures, e.g., full points that are available
in the entire domain, or partial points that fill only some subregions.
Particularly, in order to extract useful LF information effectively for
facilitating the HF modeling, the local residual term contains a shared
part and an output-specific part, the trade-off between which is dy-
namically determined by a data-driven weight parameter. The flexible
model structure enables the approach to accomplish the multi-fidelity
modeling well with diverse data structures.

The remainder of the article is organized as follows. Section 2
briefly introduces the single-output Gaussian process. Then, Section 3
presents the newly developed multi-fidelity Gaussian process in the
MOGP framework. Thereafter, Section 4 comprehensively tests the new
approach on two synthetic examples and two engineering examples with
diverse characteristics and data structures. Finally, Section 5 offers some
concluding remarks.

2. Single-output Gaussian process

Here we give a brief introduction to the single-output Gaussian
process (SOGP). GP is a stochastic process wherein any finite subset
of random variables follows a joint Gaussian distribution. As a non-
parametric3 model, the GP interprets the target function 𝑓 (𝐱) where
𝐱 ∈ 𝑅𝑑 as a probability distribution in function space as

𝑓 (𝐱) ∼ (𝑚(𝐱), 𝑘(𝐱, 𝐱′)), (1)

which is completely defined by the mean function 𝑚(𝐱) that is usually
taken as zero without loss of generality, and the covariance function
𝑘(𝐱, 𝐱′). In practice, we usually use the squared exponential (SE) covari-
ance function as

𝑘𝑆𝐸 (𝐱, 𝐱′) = 𝜎2𝑓 exp
(

−1
2
(𝐱 − 𝐱′)𝑇 𝑃−1(𝐱 − 𝐱′)

)

, (2)

where the signal variance 𝜎2𝑓 represents an output scale amplitude; the
𝑖th element of the diagonal matrix 𝑃 ∈ 𝑅𝑑×𝑑 is the characteristic length-
scale 𝑙2𝑖 that controls the width of the bell-shaped curve along the 𝑖th
dimension. For other well-known covariance functions, e.g., the Matérn
covariance function and the rational quadratic covariance function, one
can refer to Rasmussen and Williams (2006).

Typically, in many realistic scenarios, instead of the latent function
values themselves, we only have the observed response

𝑦(𝐱) = 𝑓 (𝐱) + 𝜖, (3)

where the independent and identically distributed (i.i.d.) noise 𝜖 ∼
 (0, 𝜎2𝑠 ) accounts for the practical measurement errors, the modeling
errors, the manufacturing tolerances, etc. It has been pointed out that
we can gain benefits from the consideration of noise in GP for numerical
stability (Ababou et al., 1994; Neal, 1997) and better statistical
properties, e.g., prediction accuracy and coverage (Gramacy and Lee,
2012).

For the target function 𝑓 (𝐱), suppose that we have a set of training
points 𝑋 = {𝐱1,… , 𝐱𝑛}𝑇 in the design space 𝐷 ∈ [0, 1]𝑑 , and their
corresponding output observations 𝐲 = {𝑦(𝐱1),… , 𝑦(𝐱𝑛)}𝑇 . The joint
prior distribution of the observed dataset  = {𝑋, 𝐲} augmented with a
test data {𝐱∗, 𝑓∗} is as
[

𝐲
𝑓∗

]

∼ 
([

𝟎
0

]

,
[

𝐾(𝑋,𝑋) + 𝜎2𝑠 𝐼 𝐾(𝑋, 𝐱∗)
𝐾(𝐱∗, 𝑋) 𝑘(𝐱∗, 𝐱∗)

])

, (4)

3 ‘‘Non-parametric’’ means that the GP has no explicit parameters to control the
functional form of the model. But it still has some hyperparameters that need to be inferred
in the modeling process.
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