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In this paper we propose a scalable importance sampling algorithm for computing Gaussian 
mixture posteriors in conditional linear Gaussian Bayesian networks. Our contribution 
is based on using a stochastic gradient ascent procedure taking as input a stream of 
importance sampling weights, so that a mixture of Gaussians is dynamically updated 
with no need to store the full sample. The algorithm has been designed following a 
Map/Reduce approach and is therefore scalable with respect to computing resources. The 
implementation of the proposed algorithm is available as part of the AMIDST open-source 
toolbox for scalable probabilistic machine learning (http://www.amidsttoolbox .com).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Bayesian networks (BNs) [11,27] provide a well-founded and principled approach for Bayesian reasoning in complex 
domains endowed with uncertainty. A prominent feature of BNs as a framework for representing uncertain knowledge 
is the possibility for defining efficient algorithms for performing probabilistic inference (e.g. computation of the posterior 
distribution of a target variable). These algorithms are typically designed to take advantage of the independence properties 
implied by the structure of the Bayesian network [10,17,18,36].

Even though most of the methodological development around Bayesian networks has focused on discrete variables, there 
are plenty of problems in which discrete and continuous variables coexist. A BN is called hybrid if it contains discrete and 
continuous variables simultaneously. The most established approach for explicitly handling hybrid BNs came with the defi-
nition of the conditional linear Gaussian (CLG) model [16]. This model class is based on the assumption of normality over 
the continuous variables, and the structural restriction that prevents discrete variables from having continuous parents. If 
these modeling assumptions are not congruent with the domain being modeled, one may instead opt to discretize the con-
tinuous variables [12,25,26], thus transforming the hybrid BN to a standard discrete BN. Unfortunately, such transformations 
typically also result in a loss of information.

Mixtures of truncated basis functions [14] provide a generalization of standard discretization and do not impose any 
structural restriction on the model nor do they make distributional assumptions like the normality assumption imposed by 
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CLG models. Furthermore, they are compatible with exact probabilistic inference algorithms as, for instance, the Shenoy–
Shafer architecture [38] and the variable elimination scheme [43]. However, the complexity of probabilistic inference in 
these models often renders them inappropriate when dealing with a large number of variables and a limited response 
time [37].

2. Motivation and contribution

In this paper, we are interested in approximate probabilistic inference methods for hybrid BNs satisfying the following 
two requirements: (i) they should be able to scale with the computational resources available in order to provide results 
after a short computing time; and (ii) the provided output should be an explicit probability density, rather than just a set of 
quantiles or moments of the distribution. A widely applicable scenario where both requirements are needed comes up when 
processing data streams at high speed, and for each item in the stream, we need to know the result of processing the item 
through probabilistic inference in a hybrid BN. The result of the inference process should be quickly available (before the 
next data item arrives). At the same time, the availability of the explicit form of the posterior density facilitates subsequent 
analysis. For instance, as a basis for expected utility calculations or as a tool for anomaly detection from the input data 
stream.

For the former reason, we focus our analysis on CLG models, instead of less restrictive alternatives such as mixtures of 
truncated basis functions, as inference in the latter models is in general more time consuming [33]. Another advantage of 
CLG models is that it is known that the posterior distribution on a continuous variable in a CLG network is always a mixture 
of Gaussians [15].

Many approaches can be used to perform approximate inference in CLG models. Deterministic approximations include 
(mean field) variational methods [40] and expectation propagation [22]. The problem is that these methods are iterative in 
nature and, as a consequence, difficult to parallelize and scale up. Scalable alternatives exist [9,20], but they are not designed 
for general BNs, but for restricted plate models oriented to learning problems. Furthermore, the approximations provided by 
these models are often expressed by a single Gaussian distribution in order to make the methods computationally efficient, 
but, as we will show in the experimental section, this approximation is usually not sufficiently accurate.

Monte-Carlo methods define another widely used class of approximate inference approaches which could be used in this 
setting. An important group of them are based on the importance sampling technique, that provides a flexible approach for 
constructing anytime probabilistic reasoning algorithms [4,23,41,42], where the term anytime means that the accuracy of the 
results provided by an algorithm is proportional to the time it is allowed to run [29]. The advantage of importance sampling 
methods is that they are embarrassingly parallelizable, as shown in [34]. However, the plain application of importance 
sampling yields an empirical distribution that approximates the posterior, rather than an explicit density (a mixture of 
Gaussians, for instance).

In this paper we extend the method in [34] enabling it to compute mixture of Gaussians posterior densities. Our contri-
bution is based on using a stochastic gradient ascent procedure taking as input a stream of importance sampling weights, so 
that a mixture of Gaussians is dynamically updated with no need to store the full sample. The algorithm has been designed 
following a Map/Reduce approach and is therefore scalable with respect to computing resources. The implementation of 
the algorithm is available as part of the AMIDST open-source toolbox for scalable probabilistic machine learning (http://
www.amidsttoolbox .com) [21].

3. Preliminaries

Consider a set of N random variables X = {X1, . . . , XN}. A BN over X is composed of a directed acyclic graph, where 
each node represents a variable in X, and a set of conditional probability distributions such that the joint distribution over 
X factorizes as

p(X) =
N∏

i=1

pi(Xi |pa(Xi)), (1)

where pa(Xi) denotes the set of parents of Xi in the graph representation.
We will use lowercase letters to refer to values or configurations of values, so that x denotes a value of X and boldface x

is a configuration of the variables in X. Given a set of observed variables XE ⊂ X and a set of variables of interest XI ⊂ X \XE , 
probabilistic inference, also called belief update, consists of computing the posterior distribution p(xi |xE) for each i ∈ I; here 
we allow Xi to be either discrete or continuous.1

If we denote by XC and XD the set of continuous and discrete variables not in {Xi} ∪ XE , and by XCi and XDi the set of 
continuous and discrete variables not in XE , the goal of probabilistic inference can generally be formulated as computing

1 In this paper we only consider inference w.r.t. the posterior marginal distribution of a variable and not joint distributions over several variables.
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