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In the standard stochastic frontier model with sample selection, the two components of the 
error term are assumed to be independent, and the joint distribution of the unobservable 
in the selection equation and the symmetric error term in the stochastic frontier equation 
is assumed to be bivariate normal. In this paper, we relax these assumptions by using two 
copula functions to model the dependences between the symmetric and inefficiency terms 
on the one hand, and between the errors in the sample selection and stochastic frontier 
equation on the other hand. Several families of copula functions are investigated, and the 
best model is selected using the Akaike Information Criterion (AIC). The methodology was 
applied to a sample of 200 rice farmers from Northern Thailand. The main findings are 
that (1) the double-copula stochastic frontier model outperforms the standard model in 
terms of AIC, and (2) the standard model underestimates the technical efficiency scores, 
potentially resulting in wrong conclusions and recommendations.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The original stochastic frontier model with sample selection was proposed by Greene [6], who provided a general frame-
work for sample selection procedures in stochastic frontier models. This model has been widely used in empirical analyses. 
For example, Flores et al. [4] examined the impact of Plataformas de Concertación (a program aimed at linking small holders 
to high-value agricultural markets in Ecuador) on productivity growth. Rahman and Rahman [12] evaluated sustainability 
of maize cultivation in terms of energy use while taking into account factors affecting choice of the growing season and 
farmers’ production environment. Wollni and Brümmer [17] investigated technology choice, productivity and efficiency of 
coffee farm households in Costa Rica. Rahman et al. [11] evaluated the determinants of switching to Jasmine rice as well as 
the determinants of Jasmine rice productivity in northern and north-eastern Thailand, etc.

Although the original stochastic frontier model with sample selection has been widely used to analyze technical effi-
ciencies and productivity of crops, it has some limitations. First, the model is usually fitted using a two-stage estimation 
method, which implies that estimators may not be efficient. Second, the two components of the error term in the stochastic 
frontier equation are assumed to be independent. This assumption can be relaxed by using copula to fit the joint distri-
bution of the two random error components more appropriately [14,16]. Third, the original stochastic frontier model with 
sample selection assumes that the unobservable in the sample selection equation is related to the random error term in 
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the stochastic frontier equation, but these two quantities are further assumed to have a bivariate normal distribution. The 
restricted form of the bivariate normal distribution may result in strongly biased estimates of parameters and technical 
efficiencies. To overcome this limitation, Smith [13] proposed a more general copula-based approach to account for data 
selectivity. Generally speaking, there is no statistical or economic reason to enforce independence between the two error 
components, or linear correlation between the errors in the stochastic frontier and sample selection equations.

To address these issues, we propose a double-copula stochastic frontier model with sample selection. In this approach, 
copula functions are used to model the dependence of the symmetric and asymmetric error components, as well as the de-
pendence between errors of the sample selection and stochastic frontier equations. Several families of copula functions, such 
as the Gaussian, Frank, Clayton, Gumbel and Joe families and their relevant rotated versions are systematically considered. 
Each model is fitted globally using the maximum simulated likelihood method [5], and the best model is selected using the 
Akaike information criterion (AIC). This approach was evaluated using both simulated data and cross-sectional data of rice 
production in Northern Thailand.

The remainder of this paper is organized as follows. The background on copula functions and sample selection is first 
recalled in Section 2. Our double-copula stochastic frontier model with sample selection is then introduced in Section 3. 
The simulation study is then presented in Section 4.1 and the application to rice production efficiency analysis is described 
in Section 4.2. Finally, Section 5 concludes the paper.

2. Background

In this section, we first recall some basic definitions and results about copula functions in Section 2.1. The sample 
selection model is then briefly presented in Section 2.2.

2.1. Copula functions

A recent trend in statistics and econometrics is to relax the multivariate Gaussian or Student-t distribution assumptions 
by using more flexible copula functions [10]. For example, Smith [13] used copula functions to relax the restrictive bivari-
ate normal distributional assumption of the standard Heckman’s model; Wu et al. [18] and Sriboonchitta et al. [15] used 
copula-based generalized autoregressive conditional heteroskedasticity (GARCH) model instead of multivariate GARCH mod-
els because the former does not need a multivariate normal or Student-t distribution assumption. A copula function is used 
to connect the specified marginals of each variable to form a multivariate distribution [10]. In this study, we focus on the 
presentation of bivariate copula, which will be used later. Given a joint distribution function H of two continuous random 
variables X and Y , the function C : [0, 1]2 → [0, 1] defined by

C(u1, u2) = H(F −1(u1), G−1(u2)) (1)

is a copula; here F and G are the marginal distributions of X , Y , respectively, and F −1 and G−1 are the corresponding 
quantile functions. If the random vector (X, Y ) has a joint density h(x, y), this density can be expressed as a function of the 
copula density c by

h(x, y) = ∂2 H(x, y)

∂x∂ y
= c[F (x), G(y)] f (x)g(y), (2)

where f (x) and g(y) are the marginal densities.
Different families of copula functions have different characteristics and limitations. For example, Gaussian copulas cannot 

capture tail dependences; Clayton copulas can capture lower tail dependence, while Gumbel copulas can be used to model 
upper tail dependence. In this study, we used six families of copula functions with relevant rotated versions: the indepen-
dent, Gaussian, Clayton, Frank, Gumbel, Joe, rotated Clayton, rotated Gumbel, and rotated Joe copulas, to capture potential 
dependence structure in copula-based stochastic frontier model with sample selection. The main characteristics of copula 
families used in this study are summarized in Table 1. Kendall’s τ coefficient can be computed from the copula function as

τ (X, Y ) = 4
∫∫

[0,1]2

C(u1, u2)dC(u1, u2) − 1. (3)

The lower and upper tail dependence coefficients are defined, respectively, as

λL = lim
u→0+ P

[
Y ≤ G−1(u)|X ≤ F −1(u)

]
= lim

u→0+
C(u, u)

u
(4)

and

λU = lim
u→1− P

[
Y > G−1(u)|X > F −1(u)

]
= lim

u→1−
1 − 2u + C(u, u)

1 − u
. (5)

Fig. 1 displays several copula contour plots under standard normal distribution. The contour plots are generated based 
on the value of Kendall’s tau equals to 0.7. These plots illustrate the fact that different copula functions have different 
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