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A B S T R A C T

This paper proposes an optimal and unifying instrumental variable (IV)-based Vector Fitting (VF) method for
frequency-domain (FD) identification of models formed by rational basis function (RBF) expansions. The pro-
posed method is denoted by IV-FD-VF and can be similarly applied for estimating models formed by both
continuous- and discrete-time RBF sets. The key advantage of IV-FD-VF lies in the fact that, differently from
standard FD-VF approaches, it guarantees an optimal solution after convergence. This important optimality
property is proved to be independent of the nature of the noise that corrupts the data (for instance, if it is white
or coloured). Two case studies are used to validate the proposed IV-FD-VF method. One of these case studies
considers actual frequency-domain data sets extracted from two different single-phase power transformers.

1. Introduction

System identification based on linear models formed by rational
basis functions (RBFs) plays a key role in various areas of engineering
[1,2]. In power systems, for instance, the so-called vector fitting (VF)
algorithms have become extremely popular due to their capability of
estimating RBF models that meet real-world physical requirements such
as realness, causality, reciprocity (in the multiport case), stability and
passivity [2]. Most successful applications of VF in power systems
comprehend wideband frequency response modelling of transmission
lines and transformers [3–7], transient analysis of frequency-dependent
network equivalents [8–11] and estimation of oscillatory (electro-
mechanical) oscillations through ringdown analysis [12,13]. In the
particular case of frequency response modelling of power transformers,
estimating wideband dynamic models may improve electromagnetic
transient simulations which subsidize, for instance, contingency ana-
lysis and equipment insulation design [14,15] (see also [16] for a
connection between very fast transients and paper insulation in power
transformers). Microwave and vibration analyses can also be considered
as application areas for VF algorithms [17,18].

VF implementations, which are also understood as robust re-
formulations of the original Sanathanan-Koerner [19] and Steiglitz-
McBride [20] iterations [21], essentially estimate RBF model para-
meters by transforming the minimization of a nonlinear least-squares
objective function (NLSOF) into a sequence of linear least-squares
problems [2]. In other words, the original nonlinear optimization

problem is rewritten as an alternative iterative procedure composed by
a sequence of linear optimization problems.

By making use of frequency-domain (FD) tabulated data, the VF
method has been firstly proposed by Gustavsen and Semlyen [22] for
estimating models given by rational transfer functions. Particularly,
such a FD VF (FD-VF) method uses continuous-time partial fraction
functions as RBF sets for representing these models. Few years later,
several modifications and improvements have been incorporated within
the original VF procedure described in [22]. By promoting some nu-
merical enhancements for faster convergence (the QR approach)
[23,24] and also the so-called VF relaxation [25], for instance, FD-VF
have reached the so-called vectfit3 form, found in [26], which is still one
of the most popular implementations of FD-VF.

In [27], the authors introduced another standard FD-VF algorithm,
known as Orthonormal VF, which consists of replacing the original
partial fractions with the so-called continuous-time Takenaka-Malm-
quist orthonormal basis functions [28]. Improvement in terms of nu-
merical conditioning is considered as one of the benefits of using or-
thonormal basis functions as RBFs [27,29]. In [30], the use of frequency
localizing basis functions as RBFs is also studied in the context of FD-
VF. Discrete-time counterparts of these FD-VF algorithms can be found,
for instance, in [29,31,32].

Nonetheless, although standard VF algorithms are worldwide re-
cognized for providing fast and good estimates for FD system identifi-
cation problems (and that is actually the main reason for the success of
these algorithms), two key issues related to them still remain. First,
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there is no proof of convergence for the VF iterations. Second, they do
not guarantee their converged solutions are local (or the global) opti-
mums of their corresponding NLSOFs [2]. In fact, if data used for es-
timation are corrupted by coloured noise, some recent results on VF
implementations show they never converge to any local minimum [33].

Now, as far as system identification based on time-domain (TD)
tabulated data is concerned, TD VF methods present a similar char-
acteristic, that is, they also do not guarantee their converged solutions
are local (or the global) optimums of their corresponding NLSOFs.
However, in this particular context of TD VF, [11] recently proposed an
instrumental variable (IV) discrete TD VF (IV-dTD-VF) method which
effectively overcomes such an issue. In fact, assuming convergence of
the VF iterations, IV-dTD-VF guarantees that the solution is necessarily
a local optimum of its corresponding NLSOF.

The objective of this paper is to propose an extension of the IV-dTD-
VF method proposed in [11] for frequency-domain system identifica-
tion. The terminology ‘unifying’ is also used in the method to emphasize
it can be similarly applied for estimating models formed by both con-
tinuous- and discrete-time RBF sets. We denote such a unifying fre-
quency-domain approach by IV-FD-VF. The key advantage of IV-FD-VF
lies in the fact that, differently from standard FD-VF implementations, it
guarantees that the gradient local optimality condition of its NLSOF is
necessarily satisfied after convergence. Moreover, this important result
does not depend on the nature of the noise that corrupts the data. As a
consequence, more accurate RBF models may be obtained even if es-
timation data are corrupted by coloured noise.

The paper is organized as follows. In Section 2, we formulate the
identification problem of estimating linear RBF models in the fre-
quency-domain. We also establish in this section a unifying FD-VF
method. In Section 3, we transform the unifying FD-VF method of
Section 2 into the proposed IV-FD-VF iterations. In Section 4, two case
studies are used to validate the proposal. The first case study deals with
a continuous-time example where actual frequency-domain data sam-
ples were extracted from two different power transformers, whereas the
second case study aims at identifying a third order discrete-time system
corrupted by coloured noise. Finally, Section 5 addresses the conclu-
sions of this work.

2. Problem Statement and a unifying FD-VF method

A stable single-input single-output (SISO) linear time-invariant
system can be described in terms of its scalar input U α( )0 and its scalar
output Y α( )0 as

= + =Y α G α U α V α α z s( ) ( ) ( ) ( ), or0 0 0 (1)

where V α( ) represents the additive disturbance at the system output,
and α determines if the system is described either in continuous-time
( =α s) or discrete-time ( =α z).

In this paper, we deal with the frequency-domain system identifi-
cation problem of estimating a RBF model for G α( )0 based on a set of
noisy frequency response data samples ′ = ⋯G α α k N{ ( ), }, 1, ,k k0 , where
each term αk is associated with a frequency ωk according to one of the
following relations:
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where ωs denotes sampling frequency. Note that an additive noise
component V α( )kU appears in the measured frequency response of the
system ′G α( )k0 due to the input-output relation in (1):
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where =V α V α U α( ) ( )/ ( )k k kU 0 .
The desired RBF model must have a n-th order transfer function

structure in the form
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where c{ }i are the unknown model structure coefficients and α a{Φ ( , )}i
denotes a set of n rational basis functions which are completely para-
metrized by the unknown poles of G α( ), here grouped into vector
= ⋯a aa [ ]n1 T(with (·)T denoting the transpose operator).
In this paper, it is also assumed that model structure (4) can be

represented by a linear state-space realization given by
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which means that the pair of matrices ∈ ×A n n and ∈ ×B n 1 must
necessarily satisfy the well known state condition
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with I being the ×n n identity matrix. From Eq. (6), it is clear that
matrices A and B define the RBF set used in the model structure. In
principle, any continuous- or discrete-time set α a{Φ ( , )}i that fits into
definition (6) can be used as RBFs.

When it comes to continuous-time system identification, perhaps
the most common choice is to use a set of partial fractions as RBFs
[2,34], i.e.,
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For this particular case, A and B are as follows
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Meanwhile, discrete-time approaches many times consider models
formed by the so-called discrete-time Takenaka-Malmquist orthonormal
basis functions [29,1]
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where ∗(·) denotes the conjugate operator. The corresponding state-
space construction for the RBF set in (9) can be found, for instance, in
[28]. In fact, in [28] it is listed the corresponding state-space con-
struction of several continuous- and discrete-time RBF sets for which (6)
holds.

Estimating a RBF model in terms of its poles a and coefficients c{ }i
requires the definition of a certain estimation criterion. By means of the
absolute weighted least-squares criterion, estimating a and c{ }i becomes
the following nonlinear optimization problem:
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where = ⋯c cc [ ]n0 T and W α( )k is a weighting function to be selected
by the user. Choosing the weighting function W α( )k goes beyond the
scope of this paper, although the interested reader is hereby referred to
reference [35], which analyses the adoption of different weighting
functions in frequency-domain system identification.

The main objective of this paper is to propose the IV-FD-VF iterations,
which consist of an optimal way for estimating the RBF model parameters
c and a. In fact, IV-FD-VF may be considered as a unifying instrumental
variable version of the standard FD-VF iterations, since it is also based on
transforming (10) into a sequence of linear problems where coefficient sets
are estimated by means of pre-specified update-dependent poles.
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