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A B S T R A C T

This paper sets out to develop an efficient algorithm for probabilistic power flow (PPF) computation. Nataf
transformation is introduced to transform PPF problem to the independent standard normal space, an algorithm
based on Hermite polynomials is employed to determine the equivalent correlation coefficient in normal space.
Using the real part and imaginary part of discrete Fourier transformation matrix (DFTM), two quadrature rules
are developed for PPF computation. Testing on a modified IEEE 118-bus system including wind farms, the
proposed methods are compared with the point estimate method (PEM) for calculating the mean and standard
deviation of PPF outputs, a detailed discussion is also given for the accuracy of these two algorithms.

1. Introduction

As renewable generators are integrated into modern power systems,
the probabilistic power flow (PPF) technique is often introduced to
handle the uncertainties in power flow equations. In the context of PPF,
the random variables in power flow equations can be referred to as
inputs; the solutions of power flow equations are called outputs, and
PPF aims to obtain statistical information of outputs. Hitherto, various
algorithms have been proposed for PPF computation, and they can be
classified as probabilistic methods and constructive methods.

Monte Carlo simulation (MCS) epitomizes probabilistic methods.
According to the probability distributions of PPF inputs, MCS generates
samples to represent various scenarios in power systems, and performs
deterministic power flow equations to yield samples of bus voltages,
phase angles, active power flow and reactive power flow, whereby
cumulative distribution functions (CDF) of PPF outputs can be estab-
lished [1,2]. If correlated non-normal PPF inputs are involved, Nataf
transformation can be used to generate samples with prescribed mar-
ginal distributions and correlation matrix [3]. However, when MCS is
used for PPF computation, a large sample size is required to yield
convergent and accurate results, leading to a heavy computational
burden. In order to accelerate the convergence rate, more effective
sampling techniques are developed, such as Quasi-Monte Carlo simu-
lation [4], Latin hypercube sampling [5–8], Latin supercube sampling
[9] and blind number theory method [10].

The constructive methods employ a multivariate polynomial model
to represent the function relationship between PPF inputs and outputs:

= Xy H ( ) (see Eq. (17) of the paper):
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The first kind of constructive methods aim to determine the coef-
ficients aj, then = Xy H ( ) can be represented by an explicit polynomial
model, and the statistical moments of y can be easily obtained. Because
an rth-order orthogonal polynomial P x( )r is a linear combination of

…x x x1, , , , r2 , the surrogate model in Eq. (1) can also be expressed as a
sum of orthogonal polynomials [11,12]:

∑≃ ⋯ ⋯y c P x P x P x( ) ( ) ( ),
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then the coefficients cj can be determined using the orthogonality
property of orthogonal polynomials. When the number of inputs m is
large, the model in Eq. (2) based on tensor product structure would
suffer the curse of dimensionality. Besides, the cumulant method
[13–16] may also fall in this category, which employs cumulants to
characterize the statistical feature of PPF inputs, and determines the
coefficients by Jacobian matrix of power flow equations.

The unscented transformation (UT) method [17,18], point estimate
method (PEM) [19–21] and Taguchi method [22,23] can be classified
as the second kind of constructive methods. The emphasis of these al-
gorithms is not on coefficients, but to develop a multivariate quadrature
rule to calculate the moment of each monomial in Eq. (1). More spe-
cifically, they select a set of points … …t t t( , , , , )s i s m s1, , , ( = …s n1, , ), and
assign each point with a weight ps, such that the following equations
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can be satisfied for all monomials in Eq. (1):
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With different polynomial models in Eq. (1), different algorithms
can be developed for PPF computation. The computational burden of
UT and PEM increases linearly with respect to the number of PPF in-
puts, while the computational burden of Taguchi method depends on
the number of PPF inputs and the level of the orthogonal array, a higher
level helps improve the accuracy, but it would also dramatically in-
crease the computational burden [23].

This paper aims to develop an efficient multivariate quadrature rule
for PPF computation. With Nataf transformation, PPF problem is
mapped to independent standard normal space, and each PPF outputs is
expressed as a multiple integral with an implicit integrand. Using the
real part and imaginary part of discrete Fourier transformation matrix
(DFTM), two quadrature rules are developed, and an analysis of these
two algorithms is also given in the context of the moment matching
equations.

The rest of the paper is outlined as follows: Section 2 introduces
Nataf transformation and presents a new methodology to calculate the
equivalent correlation coefficient in normal space. Section 3 formulates
the PPF problem, and presents the procedures of multivariate quad-
rature rules for PPF computation. In Section 4, two quadrature rules are
developed. In Section 5, a case study is performed, and a discussion is
given on the performance of the proposed methods for PPF computa-
tion. Finally, Section 6 gives some relevant conclusions.

2. Nataf transformation

Most algorithms developed for PPF computation require that
random variables in power flow equations should be independent of
each other. For PPF problem involving correlated inputs, Nataf trans-
formation can be employed to transform correlated random variables to
independent standard normal variables.

2.1. Framework of Nataf transformation

Let = … …X x x x( , , , , )i m1 be a random vector, let F x( )i i be the cu-
mulative distribution function (CDF) of xi ( = …i m1, , ). Using the
marginal transformation, xi can be obtained by [24]:

= −x F z[Φ( )]i i i
1 (4)

where −F (·)i
1 is the inverse CDF of x z,i i is a standard normal variable,

Φ(·) is the CDF of zi.
With Eq. (4), X can be generated from a standard normal vector

= … …Z z z z( , , , , )i m1 :
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In order to generate a correlated random vector X , a correlated stan-
dard normal vector Z should be employed. Let =R ρ i j{ ( , )}X x
( = …i j m, 1, , ) be the correlation matrix of X ρ i j; ( , )x denotes the cor-
relation coefficient between xi and xj. Let =R ρ i j{ ( , )}Z z be the corre-
lation matrix of Z ρ i j; ( , )z denotes the correlation coefficient between zi
and zj. In general, ≠ρ i j ρ i j( , ) ( , )x z , and an appropriate value of ρ i j( , )z
should be determined. This issue can be handled by the algorithm in
Section 2.2.

By matching ρ i j( , )z to ρ i j( , )x , a correlation matrix RZ of Z can be
obtained, and X can be generated from an independent standard
normal vector = … …U u u u( , , , , )i m1 . Below are the detailed procedures:

1. Perform Cholesky decomposition on RZ to obtain the lower trian-
gular matrix L:

=R LL .Z
T (6)

2. Transform U to the correlated standard normal vector Z :

=Z LU , (7)

and the correlation matrix of Z would be RZ .
3. Based on inverse CDFs of xi ( = …i m1, , ), transform Z to X by Eq.

(5).

The procedures can also be expressed as:
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Note that the above transformation defines an implicit function
relationship between a correlated random vector X and an independent
standard normal vector U , which can be denoted as:

=X Uψ ( ). (9)

2.2. Determining equivalent correlation coefficient in standard normal
space

Let xi and xj be two arbitrary random variables in X . Here, a
weighted sum of Hermite polynomials are employed to approximate the
marginal transformation in Eq. (4):
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where H z( )k is the kth-order Hermite polynomial. The coefficients ak
and bl in Eq. (10) can be calculated as [25]:
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where ϕ (·) is the probability distribution function (PDF) of a standard
normal variable.

For a concise expression, denote ρ i j( , )x by ρx , denote ρ i j( , )z by ρz .
According to Eq. (10), it has:
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where μ μ,i j denote the means of x x,i j respectively; σ σ,i j denote the
standard deviations respectively.

Because [26]:
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it has:
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As shown in Eq. (14), ρx is expressed as a polynomial of ρz. For a given
ρx between xi and x ρ,j z can be determined by solving the polynomial
equation in Eq. (14), a valid solution is restricted by:

− ⩽ ≤ ⩾ρ ρ ρ1 1 and 0.z z x (15)
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