
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Adaptive robust unit commitment considering distributional uncertainty

Yumin Zhanga, Xueshan Hana, Ming Yanga,⁎, Bo Xub, Yuanchun Zhaoa, Hefeng Zhaic

a Key Laboratory of Power System Intelligent Dispatch and Control (Shandong University), Ministry of Education, Jinan 250061, China
bDepartment of Electrical Engineering, Tsinghua University, Beijing 100084, China
c Electric Power Research Institute of China Southern Power Grid, Guangzhou 510663, Guangdong Province, China

A R T I C L E I N F O

Keywords:
Adaptive robust unit commitment
Ambiguity set
Column and constraint generation algorithm
Distributional uncertainty
Imprecise Dirichlet model
Robust set

A B S T R A C T

To reduce the conservativeness of robust optimization-based unit commitment methods, an uncertainty set is
usually prespecified with respect to the distributions of uncertain renewable resources, i.e., wind power.
However, since the law of large numbers does not always work in practice, the obtained probability distribution
may be unreliable. In this paper, a data-driven adaptive robust optimization method for the unit commitment of
bulk power systems with high-level wind power integration is proposed. Different from the conventional robust
unit commitment methods, the distributional uncertainty of wind power is well respected in the proposed ap-
proach. An imprecise-Dirichlet-model-based method is developed to construct the ambiguity set of wind power,
which incorporates all possible probability distributions confirmed by historical data. The set can dynamically
change with the data, i.e., the more valid data we have, the smaller the ambiguity set will become. With respect
to the bounds of the ambiguity set, a polyhedron uncertainty set of wind power is constructed. By tuning the
parameters of the uncertainty set, a balance between operational efficiency and risk can be achieved. An
adaptive, robust unit commitment model is constructed based on the uncertainty set. By using the duality
principle and big-M method, the formulations are converted into a mixed integer linear programming problem
and solved using a column and constraint generation algorithm. Case studies on two benchmark systems illus-
trate the effectiveness and efficiency of the proposed method.

1. Introduction

The increasing integration of large-scale wind power has made
achieving the unit commitment (UC) of bulk power systems a challen-
ging task [1]. The UC module determines the online units and their
dispatch strategies. Meanwhile, it is responsible for assigning a suffi-
cient number of flexible resources to accommodate the uncertainty of
wind power [2]. When these flexible resources cannot address the un-
certainty, load shedding or wind spillage are implemented [3]. There-
fore, finding an optimal approach to assign a sufficient number of
flexible resources for wind power accommodation while maintaining
high operational efficiency is important.

A variety of optimization technologies have been proposed to ad-
dress the uncertainties in UC. These technologies can be roughly cate-
gorized into three types: deterministic optimization (DO) methods,
stochastic optimization (SO) methods and robust optimization (RO)
methods. The DO methods assign a spinning reserve (SR) according to
deterministic rules [4,5]. Although these methods are easy to imple-
ment, they can hardly capture the varying characteristics of wind
power, thereby potentially yielding suboptimal solutions [6,7]. The SO

methods manage the uncertainties of wind power according to the
probability distributions learned from historical data (HD) [8,9]. The-
oretically, the SO methods can improve the expected performance of
UC under uncertainties, but this improvement is highly dependent on
the accuracy of the estimated probability distributions. In fact, the
distributions of wind power can hardly be estimated precisely in
practice; thus, satisfactory SO performance cannot always be guaran-
teed. In addition, the SO methods are usually time-consuming, and they
are usually intractable even for moderate power systems [10]. The RO
methods can optimize system operation in the worst case of a pre-
determined uncertainty set [11,12]. During optimization, the RO
methods do not require any probabilistic information regarding the
uncertainties and can usually converge quickly. However, RO-based UC
methods may make over-conservative decisions as a result of ignoring
the underlying statistical regularity, and the considered worst-case
scenario may not always actually occur [13].

Note that the stochastic programming assumes the underlying
probability distribution of uncertainties to be precisely known [8–10],
whereas the conventional robust optimization ignores the probabilistic
information [11–13]. In practice, the probability distribution truly
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exists but must be estimated from historical data and is, therefore, itself
uncertain. To better modeling and tackling uncertainties, the dis-
tributionally robust optimization (DRO) proposed in [14–17] offers an
appealing decision-making paradigm for power system optimization
without assuming the existence of precise probability distributions.
DRO assumes that the true probability distribution of uncertain para-
meters lies in an ambiguity set (of probability distributions) and im-
munizes the operation strategies against all distributions in the ambi-
guity set. The objective of distributional robust is to optimize a problem
under the worst case of the distributions in a set (the so-called ambi-
guity set). The DRO methods have been applied in UC [14,15], energy
and reserve dispatch [16] and optimal power flow [17]. Typically, the
DRO methods are developed from the SO methods, but they make de-
cisions based on the worst distribution in a possible distribution set,
namely, the ambiguous set, instead of an assumed precise distribution.

Different ways of constructing the ambiguity set lead to different
DRO approaches with different degrees of conservativeness and com-
putational efficiency. The ambiguity set is a family of possible dis-
tributions that can be formulated in terms of moments (the expectation,
variance or both of distributions) [14–20] or distance from a known
distribution [21]. In [14], the support of a one-dimensional random
variable is partitioned into several segments, and an ambiguity set

imposes the lower and upper bounds for the expectation of each seg-
ment. As the number of segments increases, the probability distribution
can be characterized in more detail. Ref. [15] adopts the L1 norm and

∞L norm to construct the ambiguity sets, where the wind power is as-
sumed to have finite samples. Refs. [16–20] construct ambiguity sets
with a given expectation and covariance. The main shortcoming of the
moment-based methods is that only part of the available statistical in-
formation is used in the optimization, which may worsen the con-
servativeness of the result. In this regard, Ref. [22] provides an ambi-
guity set based on the non-parametric confidence band estimation of
the cumulative distribution function (CDF), with the assumption that
random variables have continuous distributions. Ref. [23] employs a
statistical inference technique to construct the ambiguity sets of dis-
crete distributions. This work illustrates that more data will lead to less
conservative solutions. The aforementioned studies well demonstrate
that extracting reliable statistical information from available data is
crucial for making a robust and less conservative UC decision. However,
the existing methods either assume an affine recourse process to sim-
plify the model or approximately convert the DRO model into a semi-
definite programming (SDP) problem or a second-order conic pro-
gramming (SOCP) problem to improve the numerical tractability,
which may lead to a suboptimal solution.

Nomenclature

Sets

B set of all buses
D set of loads
Db set of loads in bus b
G set of thermal units
Gb set of thermal units in bus b
L set of transmission lines
Lb

in ∈ = ∈l L l k b k B( , ),
Lb

out ∈ = ∈l L l b k k B( , ),
S set of segments
T set of scheduling periods
W set of wind farms
Wb set of wind farms in bus b

Indices

b index for buses
d index for loads
g index for thermal units
l index for transmission lines
s index for segments
t index for time periods
w index for wind farms

Parameters

ag, bg, cg coefficients of the quadratic production cost function of
unit g

Bij element in row i and column j of DC power flow matrix
cdt price of load shedding of load d in period t , cdt =1000$/

MWh
cwt price of wind spillage of wind farm w in period t , cwt =10

$/MWh
Ddt the electricity demand of load d in period t (MW)
Fl

max maximum power flow on transmission line l (MW)
Mbig big M: a very large number =M 10big

6

Pg
min, Pg

maxminimal/maximum power output of thermal unit g (MW)
rg

up, rg
dn ramp-up/ramp-down rate of thermal unit g

Tg
on, Tg

off minimal on/off hour of thermal unit g
Wwt

f forecasted output of wind farm w in period t (MW)
Ww

max installed capacity of wind farm w (MW)
Xg

on, Xg
off number of periods unit g has been online/offline prior to

the first period of the time span (end of period 0)
Γ /ΓS T uncertain budget over spatial/temporal scale
β β/T S confidence level of Γ /ΓT S

Φ cumulative distribution function of the standard normal
distribution

Variables

fij t, flow on transmission line ij
Pgt real-time power output of thermal unit g in period t (MW)

WΔ wt wind spillage power of wind farm w in period t (MW)
DΔ dt load shedding power of load d in period t (MW)

ugt binary decision variable: on/off status of unit g in period t.
“1” if generator is on; “0” otherwise

vgt binary decision variable indicating whether generator g
shuts down at the beginning of period t. “1” if generator
shuts down; “0” otherwise

zgt binary decision variable indicating whether generator g
starts up at the beginning of period t. “1” if generator
starts up; “0” otherwise

Wwt actual power output of wind farm w in period t (MW)
Wwt

l lower output bound of wind power, determined by the
IDM method (MW)

Wwt
u upper output bound of wind power, determined by the

IDM method (MW)
θbt phase angle of bus b in period t

Functions

Cg production cost function for thermal unit g
S S/g g

u d start-up/shut-down costs of thermal unit g (In this paper,
the same letter symbol with different fonts represents
different meanings. The common fonts have been assigned
to specific meanings, which have been given in the no-
menclature section. The bold and black fonts in the solu-
tion method parts are used to represent matrices or vec-
tors.)
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