
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Expansion planning under uncertainty for hydrothermal systems with
variable resources

Benjamin Maluendaa, Matias Negrete-Pincetica,c,⁎, Daniel E. Olivaresa,c, Álvaro Lorcaa,b,c

aOCM-Lab at Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
bDepartment of Industrial and Systems Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
cUC Energy Research Center, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

A R T I C L E I N F O

Keywords:
Hydrothermal power systems
Power system expansion planning
Progressive hedging algorithm
Stochastic programming
Long-term uncertainty

A B S T R A C T

The significant integration of variable energy resources in power systems requires the consideration of greater
operational details in capacity expansion planning processes. In hydrothermal systems, this motivates a more
thorough assessment of the flexibility that hydroelectric reservoirs may provide to cope with variability. This
work proposes a stochastic programming model for capacity expansion planning that considers representative
days with hourly resolution and uncertainty in yearly water inflows. This allows capturing high resolution
operational details, such as load and renewable profile chronologies, ramping constraints, and optimal reservoir
management. In addition, long-term scenarios in the multi-year scale are included to obtain investment plans
that yield reliable operations under extreme conditions, such as water inflow reduction due to climate change.
The Progressive Hedging Algorithm is applied to decompose the problem on a long-term scenario basis.
Computational experiments on an actual power system show that the use of representative days significantly
outperforms traditional load blocks to assess the flexibility that reservoir hydroelectric plants provide to the
system, enabling an economic and reliable integration of variable resources. The results also illustrate the im-
pacts of considering extreme long-term scenarios in the obtained investment plans.

1. Introduction

The large scale integration of Variable Renewable Energy (VRE)
resources poses critical challenges on power system planning. In par-
ticular, the need to maintain supply and demand balanced at all times
requires developing flexible and reliable power grids. Power system
expansion has historically been supported by Expansion Planning (EP)
tools, which have been addressed through mathematical programming
for more than half a century [19]. Such optimization models need to be
adapted to the new paradigm of massive integration of variable re-
sources in power grids by re-thinking some often used assumptions and
simplifications.

One of such assumptions in planning is that system load varies in a
relatively predictable and slow manner, so that generation units’
ramping constraints, minimum up and down times, and startup times
and costs are negligible. Time is represented in these EP models through
load blocks, which are obtained from a discretized load curve previously
arranged on a decreasing order, called a load duration curve—typically
one for each month. Electric demand and generation are then simply
balanced for each load block, independently. This procedure ignores

the chronology of time series and cannot accommodate unit commit-
ment costs and constraints. Recent research and experience in systems
with high VRE penetration have shown that ignoring operational con-
straints usually results in suboptimal investment plans [27].

Several recent works have focused on better representation of op-
erations in EP. A novel approach is presented by Wogrin et al. [33],
who discretize time into system states rather than load blocks. Each
system state is defined by load and renewable generation level, and
operational constraints are enforced between system states with a
probabilistic method. A more widely used approach is the use of a re-
presentative year with hourly resolution for single-period investment
planning. This time structure has been applied to incorporate a Unit
Commitment formulation [24] and demand response [13] en-
dogenously into EP models. This method captures the chronology of
load and renewable resource profiles, and allows modeling inter-hour
constraints.

A more suitable method for multi-period investment planning is the
use of representative days with hourly resolution for each studied year,
as applied by Fripp [7] and Nelson et al. [22]. This technique allows
capturing hourly, seasonal, and yearly variations in load, resource
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availability, and prices, leading to a better assessment of the required
flexibility to accommodate high shares of VRE. Recent work by Poncelet
et al. [28] analyzes methodologies to select the representative days
from each year.

Another simplification still often applied in EP models that risks
yielding uneconomical or unreliable plans is to take a deterministic
approach and consider a single future scenario in each optimization.
The volatility of energy resources’ availability and cost, technological
developments, and uncertain load growth motivate the endogenous
inclusion of uncertainty in capacity expansion planning. Stochastic
Programming (SP) has been used in EP to minimize expected costs of
investment and operations in multiple scenarios. To account for op-
erational uncertainty, work such as that by Jin et al. [12] and Park and
Baldick [25] consider multiple load and wind profile scenarios with
discrete probabilities.

The use of discrete scenarios has also been extended to the invest-
ment scale. A statistical procedure for load growth and fuel price sce-
narios is presented by Feng and Ryan [6], and expert opinion is used by
Li et al. [17] to formulate climate change scenarios for multi-period EP.
Munoz et al. [21] and Hobbs et al. [11] show that SP leads not only to
economic plans under long-term uncertainty, but also to more reliable
and adaptable systems. However, this method requires assigning

discrete probabilities to each modeled scenario, which may prove a
complex challenge for long-term uncertainties. Additionally, these
works do not consider operational constraints that must be modeled in
a chronological time framework, so flexibility requirements from VRE
integration are not completely captured.

Water reservoirs in hydrothermal systems may be used to hedge
against this uncertainty in multiple scales. Nevertheless, the re-
presentation of reservoir management details in EP has not received
enough attention [10], due to the complexity of including constraints
that link reservoir water levels throughout the time horizon, and be-
cause of the inherent uncertainty in water inflows. In systems with high
VRE penetration, it becomes necessary to additionally include opera-
tional attributes of hydroelectric units, such as their high ramping ca-
pacity, to better asses the flexibility that these units may provide.

The standard to coordinate operations in hydrothermal systems,
such as Chile, Sweden, Brazil, and others, is to use the Stochastic Dual
Dynamic Programming (SDDP) methodology developed by Pereira and
Pinto [26] or derived formulations to consider large inflow scenario
trees and manage reservoirs over time. However, this method does not
lend itself nicely to modeling operations in EP, since its optimal solu-
tion depends on the topology of the grid and, thus, cannot be en-
dogenously incorporated. Some studies have used SDDP in expansion

Nomenclature

Sets and indices

Γh s, Set of inflow scenarios that follow the same trajectory as
inflow scenario s up to hour h

B Set of buses, indexed by b
C Set of connections in the water network, indexed by c

n
inC Set of connections directed into water node n
n
outC Set of connections directed out of water node n

D Set of representative days, indexed by d
G Set of all generators, indexed by g

HG Set of hydro generators
bG Set of generators located in bus b

H Set of hours, indexed by h
dH Set of hours in day d
pH Set of hours in period p

L Set of transmission lines, indexed by ℓ
b
inL Set of transmission lines directed into bus b
b
outL Set of transmission lines directed out of bus b

N Set of nodes in the water network, indexed by n
RN Set of water nodes that are reservoirs

P Set of investment periods, indexed by p
2P Set of investment periods, indexed by p

S Set of inflow scenarios, indexed by s

Parameters

η L
ℓ Transmission loss factor of line ℓ

ηg
H Hydraulic efficiency of hydro generator ∈g Gh

[MW/(m /h)]3

BG
g Investment cap per period for generator g [MW]

BL
ℓ Investment cap per period for line ℓ [MW]

CG
g Upper bound on capacity for generator g [MW]

CL
ℓ Upper bound on capacity for line ℓ [MW]

Vn h s, , Upper water volume storage limit for node n at hour h and
inflow scenario s [m3]

ϕg p
fuel
, Fuel cost of generator g on period p [US$/MWh]

ϕg p
Gfix
, Annual fixed Operations & Maintenance (O&M) costs of

generator g on period p [US$/MW/year]
ϕ p

Lfix
ℓ, Annual fixed O&M costs of transmission line ℓ on period p

[US$/MW/year]
ϕg

OM Variable O&M costs of generator g [US$/MWh]
πs Probability of inflow scenario s in any year
θh Scaling factor of hour h; i.e. the number of hours in a year

that are represented by hour h
V n h s, , Lower water volume storage limit for node n at hour h and

inflow scenario s [m3]
bg p

G
, Existing built capacity of generator g that will be opera-

tional in period p [MW]
b p

L
ℓ, Existing built capacity of transmission line ℓ that will be

operational in period p [MW]
cg h, Maximum generating capacity factor for generator g in

hour h as fraction of installed capacity
fp Factor to bring costs in period p to present value
lb h, Load in bus b and hour h [MW]
rg

up Upward ramp rate of generator g as fraction of installed
capacity

rg
dn Downward ramp rate of generator g as fraction of installed

capacity
Vn

i Initial stored water at each reservoir ∈n RN [m3]
wn h s, , Natural water inflow into node n at hour h and inflow

scenario s [m /h3 ]
yp Length of period p [years].

Variables

Bg p
G
, Capacity construction decision of generator g at period p

[MW]
B p

L
ℓ, Capacity construction decision of line ℓ at period p [MW]

Cg p
G
, Cumulative capacity of generator g on period p [MW]

C p
L
ℓ, Cumulative capacity of line ℓ on period p [MW]

Eb h s, , Energy curtailment in bus b at hour h under inflow sce-
nario s [MW]

F h sℓ, , Power flow through line ℓ at hour h under inflow scenario
s [MW]

Pg h s, , Dispatch level of generator g at hour h under inflow sce-
nario s [MW]

Vn h s, , Stored water volume in water node n at hour h under in-
flow scenario s [m3]

Wc h s, , Water flow through connection c at hour h under inflow
scenario s [m /h3 ].
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