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Thermal comfort is a key consideration in the design and modeling of buildings and is one of the main steps to
achieving smart building control and operation. Existing solutions model thermal comfort based on factors such
as indoor temperature. However, these factors are not directly controllable by building operations, and instead
are a by-product of complex interactions between controllable parameters such as air conditioning setpoint and
other environmental conditions. In this paper, we use machine learning (ML) to bridge the gap between con-
trollable building parameters and thermal comfort, by conducting an extensive study on the efficacy of different

ML techniques for modeling comfort levels. We show that neural networks are especially effective, and achieve
98.7% accuracy on average. We also show these networks can lead to linear models where thermal comfort score
scales linearly with the HVAC setpoint, and that the linear models can be used to quickly and accurately find the
optimal setpoint for the desired comfort level.

1. Introduction

Thermal comfort modeling is a crucial component in the process of
building design, operation and optimization. Energy consumption by
buildings accounts for 40% of energy and 60% of electricity usage
worldwide. On average, over 50% of a building’s energy is used by the
heating, ventilation and air conditioning (HVAC) system [1,2], while in
areas such as Australia and the Middle East the figure can be as high as
70% [3]. The primary product of an HVAC system is the thermal
comfort. People today spend over 90% of their time in buildings [4],
and poor comfort in buildings increases the chances of sick building
syndrome, absenteeism and cognitive degradation [5]. Thus, it is im-
portant to create a healthy and comfortable indoor space, while at the
same time minimizing building energy use. A key step towards this goal
is creating accurate models of thermal comfort.

In the past decades, thermal comfort modeling has received much
research attention. The most popular model is the predicted mean vote
(PMV) model proposed by Fanger et al. [6] and adopted in the ASHRAE
Standard 55 [7]. PMV models thermal comfort using six factors, in-
cluding four environmental factors (indoor temperature, indoor hu-
midity, mean radiant temperature (MRT) and air velocity) and two vital
ones (metabolic rate and clothing insulation).

Although the PMV model works fine for evaluating thermal comfort,
it is not readily applicable to smart buildings. In a typical smart
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building, the building management system (BMS) predicts thermal
comfort levels based on different controllable building settings, before
deploying specific settings. However, while the PMV model establishes
a comfort score based on the PMV factors, it does not capture the re-
lationship between controllable building settings and the comfort score.
In particular, the three indoor PMV factors, indoor temperature, indoor
humidity and MRT, cannot be directly controlled by the BMS, and in-
stead result from complex interactions between controllable building
parameters such as HVAC settings, weather conditions and other fac-
tors. Thus, to improve thermal comfort for smart buildings, controllable
building factors should be used for modeling in place of non-con-
trollable ones.

In this paper, we aim to use machine learning (ML) [8-10] to cap-
ture the impact of controllable HVAC operations on thermal comfort.
The basic idea is first to use different ML algorithms to model the re-
lationship between controllable parameters and the indoor PMV fac-
tors, given the current date, time and weather information. Then, the
PMV factors predicted by the ML models for different HVAC settings are
fed into the BMS for decision making. To validate the soundness of this
approach, we performed extensive data analytics using a variety of ML
models. The key results we obtained are as follows:

1. Nonlinear ML algorithms, including support vector machine re-
gression (SVR) with nonlinear RBF kernels and neural networks
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(NN) perform on average 66% better than linear methods, including
linear regression (LR) and SVR with linear kernels. This indicates a
complex relationship between the data features and PMV factors.

. The performance of NNs depends on the network configuration. We
found an optimal configuration with 7.2% higher PMV modeling
accuracy compared with the default configuration. Furthermore, the
optimal configuration can be trained very quickly, in only a few
seconds.

. The ML-based solution using NNs achieves high modeling accuracy,
with an average error of only 1.3% in predicted PMV comfort levels.
Additionally, we show using the NN models that the PMV score is
linearly related to the HVAC setpoint, given knowledge of other
non-controllable factors such as date, time and weather conditions.
Using the linear model, we can efficiently find the optimal, least
energy-intensive HVAC setpoint achieving a desired PMV comfort
level.

The rest of this paper is organized as follows. We review related
works on comfort modeling in Section 2. We describe our dataset and
present the model architecture in Section 3. In Section 4, different ML
algorithms are used to model the relationship between the dataset and
the PMV factors. In Section 5, we compare the models and show that
NNs achieve the best performance. We also show how the NN model
can be used for smart building control. Finally, Section 6 concludes the
paper and suggests future works.

2. Related works

Thermal comfort modeling has been studied extensively in the past
decades. The most well-known thermal comfort model is the PMV
model proposed by Fanger et al. [6] and adopted in the ASHRAE
Standard 55 [7]. PMV assumes that thermal comfort is determined by
six factors, including four environmental factors (indoor temperature,
MRT, indoor humidity and air velocity) and two vital factors (metabolic
rate and clothing insulation). Based on these factors, a set of equations
are given to derive a thermal comfort score ranging from —3 to 3. The
seven integers within this range can be interpreted in ascending order
as indicating cold, cool, slightly cool, neutral, slightly warm, warm and
hot, respectively. Based on the PMV score, a thermal comfort index
called predicted percentage of dissatisfied (PPD) can also be computed.
The PPD value ranges from 0% to 100%, where small values indicate
great comfort. ASHRAE Standard 55 recommends that PMV and PPD
should be within + 1.0 and < 20%, respectively, to meet basic occupant
thermal comfort needs.

In addition to the PMV model, ML offers another way to model
thermal comfort. Megri et al. in [11] applied the €-SVR algorithm to the
six PMV factors to predict the PMV comfort score. Using 793 data
samples for training and 18 samples for testing, they achieved a mod-
eling accuracy of up to 99%. Atthajariyakul and Leephakpreeda [12]
also modeled PMV scores, but used a NN model with two hidden layers.
Their results showed very high modeling accuracy.

The main difference between the past works and ours is that earlier
model was parameterized by the PMV factors, whose values are not
directly controllable. To be of use for a smart building BMS, it is crucial
that a thermal comfort model is based on parameters that the BMS can
directly control [13,14]. In this paper, we first model the relationship
between the controllable parameters and the PMV factors and then use
the predicted factors to compute comfort scores for BMS control and
deployment.

3. Dataset and system architecture

In this section, we first describe the dataset we use for training our
models, before describing the model architecture.
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Table 1

Valid data range and type.
Feature Min Max Type
HVAC1 On/Off 0 1 bool
HVAC2 On/Off 0 1 bool
HVAC1 Setpoint 15 50 float
HVAC2 Setpoint 15 50 float
Outdoor Temperature 15 50 float
Outdoor Humidity 10 100 float
Outdoor Irradiance —50 1,400 float
Outdoor Illuminace 0 200 float
Rain 0 1 bool
Month 1 12 integer
Weekday 1 7 integer
Hour 1 24 integer
Minute 1 60 integer
Indoor Temperature 15 45 float
Indoor Humidity 10 100 float
Indoor MRT 15 50 float

3.1. Dataset

The data resolution is one minute, meaning that a data sample was
recorded every minute. Each data sample has four major feature sets,
including the date and time (datetime), weather conditions, HVAC
settings and indoor data. The first three sets of data are used as the
dependent features of the ML algorithms, while the indoor data values
are the target features the algorithms try to learn. Details of each fea-
ture set are shown in Table 1, and described below.

3.1.1. Datetime data

Each data sample is associated with a timestamp including the date
and time. Since ML algorithms typically deal with numerical values
rather than a datetime string, the timestamp is broken into four num-
bers, including month, weekday, hour and minute. Weekday is a value
ranging from 1 to 7 representing the days of the week.

3.1.2. Weather data

The weather data has five features, including the outdoor tem-
perature in Celsius (°C), the percentage of outdoor humidity, outdoor
irradiance in the Watt per square meter (W/m?), outdoor illuminance in
lumens per square meter (Lux), and the rain status, either true or false.

3.1.3. HVAC data

The testbed office room has two fan coil units. The status of each
unit, either on or off, was monitored and denoted using a Boolean
value. Also, the setpoint temperature of each unit in degrees Celsius was
recorded as a floating point number. In total, each HVAC datapoint has
four values, HVAC1 On/Off, HVAC2 On/Off, HVAC1 Setpoint and
HVAC2 Setpoint. The four HVAC features are the only controllable
features in our system.

3.1.4. Indoor data

Three indoor features are recorded in the dataset. The first two are
the indoor temperature in Celsius and the percentage of indoor hu-
midity. The last feature is the MRT, measured in degrees Celsius. MRT
models the heat exchange between an indoor object like the human
body and the indoor environment. Past studies have shown that MRT is
one of the most critical factors for thermal comfort [6,15].

3.1.5. Data preprocessing

The collected data was often noisy due to the problems such as
faulty sensors or software bugs. The dataset was cleaned to ensure the
recorded data was valid. The valid data range of each feature is shown
in Table 1.



Download English Version:

https://daneshyari.com/en/article/6859178

Download Persian Version:

https://daneshyari.com/article/6859178

Daneshyari.com


https://daneshyari.com/en/article/6859178
https://daneshyari.com/article/6859178
https://daneshyari.com

