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A B S T R A C T

A holomorphic embedding method (HEM)-based algorithm for finding Type-1 power-flow solutions is in-
troduced whose complexity is the same as that of the HEM power-flow algorithm for calculating the high voltage
(operable) power-flow solution. The algorithm is tailored to finding Type-1 solutions by using a modified em-
bedded system and a numerical mapping from a set of integer-based boundary conditions to a floating-point-
number-based reference state. The modified system can also be viewed as a homotopy whose initial point (no-
load reference state) is consistent with the Type-1 solution homotopy path of the modified system, with an
embedding parameter that functions simultaneously as the homotopy parameter. By using analytic continuation,
starting from the initial point/reference state, the solution obtained for the modified system matches the one
obtained from the original system model at the load of interest. Numerical results for three-/five-/seven-/14- and
118-bus systems are presented to demonstrate the numerical robustness.

1. Introduction

There exist multiple power-flow solutions (PFS’s) for a power
system characterized by the traditional complex nonlinear power-bal-
ance-equations (PBE’s), though the exact number remains unknown.
Efforts have been made to find all/multiple PFS’s using various ap-
proaches [1–4]. Because of the number of possible solutions, finding all
solutions, with or without imposing VAr limits, is a computationally
formidable task. In this work, we limit ourselves to finding the solutions
of most interest from a power system voltage stability assessment point
of view, namely the Type-1 PFS’s [5–7]. The power system voltage
stability problem, exacerbated by the rise of loading levels without
concomitant transmission expansion, has been determined to be re-
sponsible for several major blackouts across different countries. Various
studies have been completed to analyze the voltage instability phe-
nomenon and create metrics which measure voltage stability margin,
among these metrics is the distance between high-voltage (HV) (or
operable solution) and the Type-1 PFS’s [8–11]. Much research effort
has been expended in the development of algorithms and appropriate
numerical methods for finding all Type-1 PFS’s: In [8], an algorithm has
been proposed for finding some Type-1 PFS’s by applying Newton’s
method to the algebraic equations that characterize the solution points.
The fundamental idea of the algorithm is to ‘guess’ at an initial estimate
close to a Type-1 PFS, e.g., by setting the initial estimate for one of the

bus voltages close to 0.0 instead of 1.0 (flat start), so that the iterative
process will converge to a Type-1 solution. By selecting the estimate of
each bus voltage, one-at-a-time, to be close to zero, the hope is to find
all Type-1’s. This algorithm suffers from the well-known shortcomings
of Newton’s method and will not necessarily converge to the desired
solution even if the initial estimate is close to the solution [9,10]. A
more reliable algorithm developed from the continuation power flow
(CPF) method was proposed and numerically tested in [11]. The CPF-
based method traces the PV curve (for a load bus) or the Pδ curve (for a
generator bus) for each bus in the system, by varying the load/gen-
eration at only one bus at a time. By starting from a HV solution, where
all eigenvalues of the power-flow (PF) Jacobian matrix have all nega-
tive real parts, the traced curve reaches and passes the saddle nose
bifurcation node point (SNBP), with the sign of the real part of only one
eigenvalue changing from negative to positive, resulting in a Type-1
PFS. While the theory in [11] is rigorous, the CPF-based numerical
method is unsuccessful at finding all the Type-1 solutions for systems
with both non-radial and weakly connected regions that have strong
voltage support [12].

For systems with dynamic models included, the solutions of most
interest in transient stability assessment through energy function
methods are the Type-1 unstable equilibrium points (UEP’s) ([13–18]).
When classical machine models are included and the branch resistances
are ignored, Type-1 UEP’s problem become identical to Type-1 PFS’s
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problem (with no additional state space variables [19]) and the
methods used to find Type-1 UEP are intimately related to the methods
proposed here (as will be shown) and inform research into the algo-
rithms for finding the Type-1 PFS’s. It is well known that the collection
of Type-1 UEP’s forms the energy function topographical boundary
that, once violated by the system state, leads to instability. The set of
Type-1 UEP’s contains the closest UEP, which is of special interest in
transient stability margin assessment. The closest UEP is the Type-1
UEP, whose energy function has the lowest value [13], excluding of
course the energy level of the reference point, i.e., the stable equili-
brium point (SEP). The authors in [19] propose a method for finding
the closest UEP by redefining the problem statement such that a search
for a Type-1 UEP is replaced by a search for the SEP of the reformed
system. With the UEP of interest looking more like the SEP of the re-
formed system, the hypothesis was that any iterative method, which is
reliable for SEP calculations, could be used by starting from a reason-
able initial estimate. However, it was reported in [20] that only two
Type-1 UEP’s could be found by the method proposed in [19] for a
system which is known to have more; hence this method offers no
guarantee of finding all the Type-1 UEP’s or of finding the closest UEP.
The authors in [20] have developed a homotopy-based method for
finding all the Type-1 UEP’s for a power system, and then identifying
the closest UEP. It was proven that if the homotopy curve passes the
‘turning point’ (similar to the SNBP but applied to the homotopy path)
only once, the solution obtained will be a Type-1 UEP (This approach
has similarities to the proposed CPF-based method in [11].) While the
method proposed in [20] is more reliable for finding the closest UEP, it
is computationally expensive to trace all the homotopy curves, com-
puting converged solution after converged solution along each homo-
topy path. Additionally, it is possible to have multiple revisits of the
same Type-1 solution as reported in [4], thus reducing the efficiency of
the algorithm further.

The method proposed in this paper uses several of these principles
to achieve a method for finding up to N Type-1 solutions (in an (N+1)-
bus system), with a theoretical guarantee of convergence provided
certain mild conditions are obeyed. The approach achieves its theore-
tical convergence guarantee by using the same technique used by HELM
[21] for finding the HV solution of the PF problem, but uses reference
states (RS’s), corresponding to Type-1 solution branches (rather than
the Type-0 solution branch which produces an HV solution), so that the
Type-1 solution associated with each branch is found. The RS for the
Type-1 branch is found for a modified system by using a numerical
mapping from a set of integer-based boundary conditions to a floating-
point-number-based RS. The modified system is constructed as a
homotopy whose initial point (no-load RS) is consistent with the Type-1
solution branch of the modified system and then analytic continuation
is used as both the system and load parameters are simultaneously
modified by the same embedded/homotopy parameter so that the so-
lution point matches the system model at the load of interest. A word
about VAr limits and bus-type switching: often times the Type-1 PFS’s
are associated with large generator reactive power outputs, exceeding
the VAr limits and resulting in bus type switching (from PV bus to PQ
bus) [2]. To incorporate bus-type switching into the proposed work one
would use an iterative approach: finding a possible Type-1 PFS, im-
posing VAr limits as indicated, and re-solving the modified system for
another candidate Type-1 PFS, and so on. The effect of bus-type
switching is to reduce the voltage stability margin, which affects all
solutions [2]. The authors realize that this is a complex theoretical and
numerical problem, deserving of an in-depth treatment which is re-
grettably beyond the scope of the present work.

This paper is organized as follows: In Section 2, the approach used is
presented to help the reader visualize the concept and some comments
about convergence issues are discussed. Section 3 introduces the HEM-
based equations used to solve for the low-voltage/large-angle (LV/LA)
PFS’s that correspond to Type-1 PFS’s. In Section 6, the method for
finding the no-load RS’s is introduced. In Section 5, the equations for

finding the full-load solution are developed. In Section 6, several the-
orems establish the connection between the integer-based boundary
conditions and the Type-1 solutions. In Section 7, numerical test results
for different sample systems are given. The conclusions are presented in
Section 8.

2. The concept

The approach is conceptually straightforward and based upon the
HEM for finding the HV PFS [21,22]. Consider a two-bus system, with a
slack bus and a PQ bus. The HV (black, solid) and LV (gray, short-
dashes) of Fig. 1 represent the PV curves for the Type-0 and Type-1
PFS’s, respectively. For such a two-bus system, where α represents the
load scaling parameter, only Type-0 (HV) and Type-1 (LV) PFS’s exist.

HEM is used for finding the HV solution by first calculating the HV
no-load RS and then determining the Maclaurin series coefficients for
the HV solution, provided a solution exists for the load profile given.
Through the use of Padé approximants, which insure both that the
series converges and convergences is accelerated [23], bus voltages are
calculated. This is the approach used by the HELM commercial-grade
PF software [21]. Convergence is guaranteed provided the PBE for-
mulation is selected correctly and some mild continuity conditions are
obeyed, i.e., the PBE’s are continuous with no bifurcation points on the
interval [0,1].

In this paper we show that we can use the same techniques to find
the PFS corresponding to the low-voltage (LV) curve (Type-1 PFS) in
Fig. 1: Rather than starting from the HV RS, the LV no-load RS is cal-
culated and HEM is used to obtain the Maclaurin series coefficients of
the LV curve while Padé approximants are used to deal with divergent
and slowly convergent series. While the HV solution has (arguably) one
RS for an (N+1)-bus system, the LV solutions have at least 2 N-1 un-
ique RS’s, many of which introduce voltage zeros, which lead to un-
defined functions. In this work we show how to handle these voltage
zeros using dual variables and how to identify RS’s corresponding to N
Type-1 PFS from the 2 N-1 possibilities.

A word about the HEM convergence guarantees: The HEM con-
vergence guarantee, as it applied to the PFS is contingent on two as-
pects of the problem. First, unlike a Newton formulation in which a
solution need only exist at the load of interest, HEM requires that so-
lutions exist continuously along the analytic continuation path from the
no-load RS to the load of interest and that bifurcations do not take place
along this path. (More precisely, α=1 should not be a branching point,
and it should not be contained in Stahl's cut-set (a specific case of the
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Fig. 1. Analytic continuation on a conventional PV curve.
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