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A B S T R A C T

Virtual power plant (VPP) technology is a promising solution to manage the uncertainties of renewable energy in
demand side. Because of various uncertainties, VPPs’ dispatch models are always solved by stochastic optimi-
zation, robust optimization and interval optimization. However, these approaches always require high com-
putational complexity, be over conservative or cannot describe VPPs’ profitability precisely. Thus, this paper
combined interval and deterministic optimization together and adopted the combined approach to solve a VPP’s
dispatch problem. The combined optimization not only maximized VPPs’ deterministic profits under forecasted
scenarios to estimate the VPP’s most likely profits, but also maximized VPPs’ profit intervals to manage un-
certainties. The proposed model was in a regulated electricity market environment, and the VPP’s traded energy
was cleared by time-of-use prices. A case study from real world was adopted to prove the validity of this model.
Comparison with other optimizations like stochastic and robust optimization was also studied. The combined
optimization can manage the VPP’s uncertainties within limited computational time.

Nomenclature

A. Indexes

L indicator of the left limit of the interval
R indicator of the right limit of the interval
s index for scenarios
t index of time periods

B. Constants

A B/ interval numbers
a b λ/ / real numbers
a b a b/ / /f f h h CHP unit’s characteristic parameters
eff /effbat c bat dc, , efficiency of storages’ charging/discharging
effbl efficiency of boiler
effev efficiency of EV charging
Ls t, local load demands

L L[ , ]L R intervals of local load demands
Obat

s t, operating and maintenance costs of storages
P P/chp

min
chp
max CHP unit’s minimum/maximum outputs

Pev
max EVs’ maximum charging power

P P/pv a
s t

w a
s t, , available wind/solar power

Qgas natural gas prices
Rp Rp/up dw CHP unit’s ramp up/down speed limits
S S/up dw CHP unit’s start up/shut down ramp speed limits
SoC SoC/bat

min
bat
max storages’ minimum/maximum state of charge

SoCbat
end storages’ terminal state of charge requirement

SoCev
s t, state of charge of EVs’ battery

SoCev
max maximum value of EV batteries’ state of charge

SoCev
end terminal requirement of EV batteries’ state of charge

T T[ / ]bl
min

bl
max minimum/maximum value of boiler outputs

T ev terminal hour for EV charging
T T[ , ]d

L
d
R thermal demand intervals

Td
s t, thermal demands

A Aw( )/m( ) width and midpoint of interval A
y vectors of random variables
Y set of all possible random variables
Z Z/bat p chp, operating and maintenance cost per unit output
Z Z/ /t chp pv, of storage units/CHP power/CHP thermal/solar
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Z Z/ /w bl power/wind power/boiler
β deterministic factor in multi-objective problem
δ δ/sell

t
sell
t time-of-use prices for selling/purchasing energy to/from the

main grid
δdev penalty price for exchanged energy deviation
δshed penalty price for shed load
ξ DM’s degree of pessimism

C. Variables

Cfuel
s t, VPP’s total fuel costs

COM
s t, VPP’s total operating and maintenance costs

F F/chp
s t

bl
s t, , fuel consumption of CHP unit/boiler

Ichp
s t, states of CHP, 1 means operation, 0 otherwise

Lev
s t, EVs’ charging power

P the possible profit interval of the VPP
Pd the VPPs’ most likely profits under random variables’ fore-

casted value
Pbuy

s t, energy purchased from the distribution company
Pbat

s t, storage units’ outputs
P P/bat c

s t
bat dc
s t

,
,

,
, storage units’ charing/discharging power

Pbat
max storage units’ maximum outputs

Pchp
s t, CHP unit’s outputs

Pcut
s t, renewable power curtailment

P P[ , ]DG
L

DG
R intervals of DGs’ outputs

Pg
L trading energy with the main grid

Pg
plan t, planned trading energy schedule

P P[ , ]g
L

g
R intervals of trading energy

Psell
s t, energy sold to the distribution company

Pdev
s t, deviation of exchanged energy

Pshed
s t, shed load

P P[ , ]shed
L

shed
R intervals of shed load

pens t, penalty of deviation and load shedding
Rvpp

d VPP’s deterministic profits
R R[ , ]vpp

L
vpp
R VPP’s profit intervals

SoCbat
s t, storage units’ state of charge

Tbl
s t, boiler’s thermal outputs

Tchp
s t, CHP unit’s thermal outputs

T T[ , ]DG
L

DG
R DGs’ thermal output intervals

T T[ , ]dis
L

dis
R intervals of dissipated thermal power

Tdis
s t, dissipated thermal power

xd day-ahead decisions
xr real time decisions
y0 random variables’ forecasted values
ychp

t start up indictor, 1 means start up operation, 0 otherwise
y random variables in best situation
y random variables in worst situation
zchp

t shut down indictor, 1 means shut down operation, 0 other-
wise

D. Functions

h (·) equality constraints
g (·) inequality constraints
Pr (·) probability estimation function

Remark: All bold letters denote interval numbers in this paper.

1. Introduction

More and more renewable energy sources have been integrated into

power systems in the form of distributed generations (DGs). They can
support distribution network operation and provide clean energy, but
they are difficult to control [1]. Thus, the virtual power plant (VPP)
technology has attracted broad attentions as a feasible solution to
control DGs. The VPP combines the separately located DGs by com-
munication technology and centrally dispatchs them by energy man-
agement systems [2]. The VPP can reduce DGs’ generation un-
certainties, reduce deviation losses and increase total profits [3].

Ref. [4] proposed a dispatch strategy for VPPs under the time-of-use
(TOU) pricing. Combined heat and power (CHP) units were considered
in Refs. [3,5], the profits from electricity generation and heat supply
were optimized. Ref. [6] established a dispatch model for VPPs with
electric vehicles (EVs). In Ref. [7], the customers’ satisfaction, system
stability and so on were optimized by a fuzzy multi-objective optimi-
zation problem. All of the references above were based on random
variables’ forecasted values using deterministic optimization. Since
load demands and renewable power cannot be predicted precisely,
VPPs’ actual profits may deviate from the optimized results, and these
deviations may result in unexpectable losses.

In order to handle the uncertainties in the VPPs’ dispatch problem,
various uncertainty modeling methods, such as probabilistic method
and nonparametric methods, have been proposed [8]. Decision makers
(DMs) can choose the suitable method according to the available in-
formation of random variables. Stochastic optimization is a widely
employed probabilistic method in many references’ dispatch models to
manage uncertainties. To maximize the VPP’s expected profit, bidding
strategies for the coordination of wind and hydro power were proposed
by [9]. To measure the unfavorable effects of uncertainties, some risk
indexes have been proposed and considered in the stochastic optimi-
zation. The risk measure, conditional value at risk (CVaR), was often
optimized with the expected profits, and they formed multi-objective
optimizations [10,11]. Considering the tradeoff between profit and risk,
risk adjusted return on capital was introduced in the VPP’s bidding
strategy as a objective [12]. Besides, two popular risk measures,first-
order stochastic dominance constraints and second-order stochastic
dominance constraints, were also introduced to the VPPs’ dispatch
problems [13,14].

However, probabilistic method needs random variables’ exact
probability distributions which are hard to estimate exactly. Thus,
nonparametric methods like fuzzy optimization,robust optimization,
information gap decision theory (IGDT) method and interval optimi-
zation are often employed in recent years. In fuzzy optimization,
membership functions are adopted to measure the preferences of
random variables [15]. IGDT method maximizes the VPPs’ tolerance of
uncertainties to ensure acceptable profits [16]. Robust optimization
obtains conservative schedules and maximizes the worst profits that the
VPP may suffer [17,18]. Robust optimization focuses on VPPs’ worst
profits and loses sight of the whole possible range of profits. Thus, its
schedule cannot be as profitable as other optimization approaches most
of the time. Compared with robust optimization, interval optimization
considers not only the worst cases but also the best cases, and it opti-
mizes VPPs’ whole profit intervals. Ref. [19] proposed a dispatch model
for the unit commitment problem using intervals to represent net load
uncertainties. Considering wind power integration, stochastic optimi-
zation and interval optimization were compared in a security-con-
strained unit commitment problem [20]. Ref. [21] adopted a preference
ordering from a pessimistic DM’s point of view for interval numbers and
optimized the total profit intervals of generating companies (GENCOs).
However, interval optimization cannot figured out GENCOs’ expected
profits or most likely profits, and the optimal intervals’ ranges are al-
ways too wide to describe GENCOs’ profitability precisely. Nonpara-
metric optimization approaches do not require the whole information
on random variables, and they can only provide limited information on
VPP’s profits. Thus, DMs may still blind to VPPs’ profitability. De-
terministic optimization may be a good choice to cooperate with non-
parametric optimization. It figures out the VPP’s most likely profit,
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