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A B S T R A C T

Large-scale integration of electric vehicles (EV) and wind power could have significantly negative impacts on
power systems security. So, it is becoming an increasingly important issue to develop an effective network
security-aware charging strategy of EVs. This paper proposes a multi-objective formulation for the optimal
charging schedule of EVs while considering N− 1 security constraints. An EV aggregator representing a cluster
of controllable EVs is modeled for determining the optimal charging schedule based on a trilevel hierarchy. On
the top level, the grid control center determines the EV charging strategy from the proposed formulation, where
bus voltage fluctuations, network power losses, and EV charging adjustments are considered as multi-objective
functions. To reduce the computational burden, Lagrangian Relaxation (LR) is introduced to handle time coupled
constraints and Benders Decomposition is introduced to handle contingencies. Case studies have been conducted
on the New England 39-bus system, and the results verify the necessity of considering N− 1 security constraints
and the effectiveness of the proposed formulation and solution approach.

1. Introduction

Electric vehicles (EVs) have been receiving considerable attentions
worldwide as they are clean and green. However, the large-scale in-
tegration of EVs, without coordination, may bring negative impacts on
power systems operation, such as lower voltage quality, larger power
losses, and more harmonics [1]. Therefore, effective strategies should
be developed to schedule the charging of EVs to mitigate the negative
impacts and even benefit the grid [2].

In the literatures, studies about EV charging schedule are con-
centrated on distribution network. Up to now, only a few literatures
discussed the charging issues of EVs from the transmission network
viewpoint. Ref. [3] presented a bi-level model for coordinating the
charging/discharging schedules of EVs. The upper-level model mini-
mizes the system load variance to implement peak load shifting by
dispatching each aggregator, and the lower one traces the dispatching
scheme determined by the upper-level decision-maker by figuring out
an appropriate charging/discharging schedules throughout a specific
day. Ref. [4] proposed a multi-objective non-linear mixed integer op-
timization model for EV charging scheduling considering the un-
certainties of photovoltaic and wind power in regional power grids. The
fuzzy theory was used to change the multi-objective optimization
model into a single-objective non-linear optimization problem.

EV charging schedule problems are mostly formulated as

optimization issues aiming at improving voltage profile [5–7], flat-
tening load profile [6–10], reducing power losses [7–11], offering an-
cillary services [12], minimizing the charging cost [13–15], or in-
creasing user satisfaction level [16,17]. Ref. [5] presented a
decentralized optimization methodology to coordinate EV charging to
facilitate the voltage control on a residential distribution feeder. Ref.
[10] presented a methodology to optimize power system demand due to
EV charging load, and it was demonstrated that EV charging load has
significant potential to flatten the national demand profile in the U.K.
Ref. [11] proposed an optimization model considering EV charging
demand and voltage constraints to minimize the power losses of dis-
tribution systems. Ref. [12] presented a stochastic method for optimal
coordination of charging and frequency regulation for an EV aggregator
using the Least Square Monte-Carlo technique while modeling elec-
tricity price uncertainty. Ref. [15] proposed an intelligent method to
control EV charging loads in response to time-of-use price in a regulated
market. Ref. [16] proposed a new metric to represent the EV user sa-
tisfaction fairness to achieve a tradeoff between the user satisfaction
fairness and the total charging cost of electricity.

The existing EV charging scheduling methods did not take the N− 1
security constraints into account. However, the secure operation of the
system under N− 1 contingency is an essential requirement [18]. This
paper proposes a multi-objective optimization model for EV charging
schedule considering N− 1 security constraints. The main
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contributions of this paper include: (1) the day-ahead optimal EVs
charging model, aiming at improving voltage profile, reducing network
power loss, and improving user satisfaction, from the transmission
network viewpoint is proposed; (2) the N− 1 contingencies are taken
into consideration to guarantees the secure operation of the system
under N− 1 contingencies, which is important for transmission sys-
tems. For better implementation, we introduce Lagrangian Relaxation
(LR) [19] and Benders Decomposition (BD) methods to solve the pro-
posed formulation. The former is to handle the time coupled constraint
and the latter is to handle contingencies in the optimal EV charging
scheduling model.

The rest of the paper is organized as follows. Section 2 presents the
problem formulation. Section 3 proposes the solution methodology
based on LR and BD. The proposed model and solution approach is
tested with the IEEE 39-bus systems in Section 4. Conclusions and fu-
ture work are discussed finally.

2. Problem formulation

2.1. Conceptual framework

Since the capacity of a single EV is too small to have a measurable
influence on a transmission grid, an equivalent model (EV aggregator)
that represents a cluster of controllable EVs is introduced here to de-
scribe their aggregated effects. Using these EV aggregators, a con-
ceptual framework for optimal EV charging schedule based on a trilevel
hierarchy is developed and shown in Fig. 1.

At the top level, the optimal dispatch is determined by the control
center, and the objective is to determine the charging power of in-
dividual EV aggregators based on the predicted wind, solar, and load

power. At the middle level, each EV aggregator receives the optimal
schedule from the control center and decomposes them into charging
strategies for individual EVs. At the bottom level, individual EV com-
municates with the aggregator, and follows the schedule it receives
[20].

This paper focuses on the top transmission level to obtain a day-
ahead schedule of EV aggregators for improving the system voltage
profile, reducing the power loss, and improving user satisfaction. The
main assumptions are as follows:

• The base case is formulated with unit commitment calculated in
advance according to daily load curve, daily wind power curve, and
predicted EV charging demand/ profile curves.

• The power outputs of conventional generators are adjusted ac-
cording to the total load change during the optimization.

Nomenclature

Indices and sets

b index for lines
i index for EV aggregators
j m, index for buses
k index for generators
l index for iterations
s index for system operation scenarios: 0 denotes normal

condition, and others represent contingencies
t index for hours

Constants

T scheduling duration (24 h in this paper)
n number of EV aggregators
S number of slave problems
N number of buses
L number of lines

tΔ time interval, 1 h in this paper
w w w, ,1 2 3 weighting factors of the three objectives
di t, charging duration of EV aggregator i at time t
Eev total energy demands of EVs during one day
Pb

max upper limit of power flow through line b
Pchi t,

min lower limit of charging power of EV aggregator i at time t
Pchi t,

max upper limit of charging power of EV aggregator i at time t
P kG

min lower limit of active power of generator k
P kG

max upper limit of active power of generator k
Q kG

min lower limit of reactive power of generator k
Q kG

max upper limit of reactive power of generator k
Uj

min lower limit of voltage at bus j
Uj

max upper limit of voltage at bus j

U j
d desired voltage at bus j (per unit)
UΔ j

max maximum permissible voltage deviation at bus j
Pchi t

pre
, predicted charging power of EV aggregator i at time t

Variables

f f f, ,1 2 3 three objective functions
P tloss, power loss at time t
Rb t, line resistance of line b at time t

+I jIb t
f

b t
e

, , current thought line b at time t
Ptl t, total load at time t
Pchi total charging power of EV aggregator i
Pchi t, optimal charging power of EV aggregator i at time t
Pj t

s
, active power injection at bus j at time t

P k t
s

G , active power of generator k at time t
Q k t

s
G , reactive power of generator k at time t

Qj t
s
, reactive power injection at bus j at time t

Uj t
s
, voltage at bus j at time t (per unit)

Gjm t
s

, the element in jth row and mth column of the conductance
matrix at time t

Bjm t
s

, The element in jth row and mth column of the susceptance
matrix at time t

θjm t
s

, voltage angle difference between buses j and m at time t
λ Lagrangian multiplier for the time coupled constraint

∗Pchi t, trial charging strategy of EV aggregator i at time t
Ib t

s
, Current through line b at time t

x state vector (bus voltage in this paper)
u control vector (charging power of EV aggregators)
u0 EV charging strategy vector in normal condition

∗u0 trial EV charging strategy vector
us EV charging strategy vector in contingency s
δ δ,b c vectors of slack variables for = ∗u us 0
Λ dual variable vector for + − = ∗u δ δ us c b 0

…Aggregator Aggregator 
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Fig. 1. Trilevel hierarchy for EV charging schedule.
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