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A B S T R A C T

Multi-objective optimisation has received considerable attention in recent years as many real world problems
have multiple conflicting objectives. There is an additional layer of complexity when considering multi-objective
problems in dynamic environments due to the changing nature of the problem. A novel Multi-Objective Neural
Network trained with Differential Evolution (MONNDE) is presented in this research. MONNDE utilizes Neural
Network function approximators to address dynamic multi-objective optimisation problems. Differential
Evolution (DE) is a state of the art single objective global optimisation problems and will be used to evolve
neural networks capable of generating Pareto fronts. The proposed MONNDE algorithm has the added advantage
of developing an approximation of the problem that can produce further Pareto fronts as the environment
changes with no further optimisation needed. The MONNDE framework is applied to the Dynamic Economic
Emission Dispatch (DEED) problem and performs equally optimal when compared to other state of the art
algorithms in terms of the 24 h cost and emissions. This research also compares the performance of fully and
partially connected networks and discovers that dynamically optimising the topology of the neural networks
performs better in an online learning environment than simply optimising the network weights.

1. Introduction

The Dynamic Economic Emission Dispatch (DEED) problem [1] is a
dynamic multi-objective optimisation problem. The aim of this problem
is to optimise a set of power generators over a period of time in a
manner that both minimizes: (1) The power generation operating cost and
(2) The emission of harmful atmospheric pollutants. The task of power
generation is critical for modern society to function. It is crucial that
electricity is generated in a cost-effective and environmentally re-
sponsible fashion. Power generator scheduling is a highly complex task
due to the many factors that influence the power generation process.
There are a number of constraints including: (1) The generator opera-
tion limits. (2) The generator ramp limits. (3) Balancing the power
demand and network losses. Generators also have varying levels of ef-
ficiency in terms of cost and emissions produced, thus making the
problem multi-objective. Variation in the power demand over time
makes the problem dynamic, i.e. the optimal configuration for the
power generators at time t is no longer optimal at time +t 1. For utility
companies to operate effectively, it is imperative that these power
generators are scheduled efficiently. Large increases in running costs
would be incurred due to sub optimal power generator scheduling. In
recent years, many countries have pledged to reduce their carbon

footprint [2]. As a result, utility companies must consider the en-
vironmental cost of generating electricity in addition to the financial
cost. The emission of harmful atmospheric pollutants such as sulphur
dioxide (SO2) and nitrogen oxide (NO) must be kept to a minimum
when scheduling power generators.

When searching for an optimum solution that optimises multiple
objectives, it is soon apparent that there is no single optimum solution
that optimises all of the objectives. The field of multi-objective opti-
misation is instead concerned with finding a range of solutions that
optimises each objective to a different degree. This set of solutions is
known as the Pareto optimal set, where each solution is considered to
be equally optimal. The DEED problem is also dynamic in nature due to
the changing power demand from hour to hour. The field of dynamic
optimisation is concerned with the optimisation of a dynamic objective
function, i.e. one that changes with time. There are three main factors
to consider when addressing dynamic optimisation problems: (1)
Discrete vs continuous time. (2) Deterministic vs stochastic change. (3)
Finite vs infinite time horizon. Neural networks have proven to be an
effective control method for these dynamic optimisation problems.
Neural networks are function approximators that are inspired by the
biological brain and are commonly used in machine learning research
[3]. They operate by reading in a signal through an input layer of
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neurons, this signal is then propagated through the network by
weighted connections to subsequent hidden layers of neurons. Neural
networks can be either fully connected or partially connected. Fully
connected networks have the advantage of being easy to implement as
there is no need to select a network topology. The disadvantage is that
fully connected networks have more weights that need to be optimised
than a partially connected network with the same number of neurons.
Partially connected networks have the advantage of having fewer
weights to train (and therefore less complexity), have improved gen-
eralization and have reduced hardware requirements in physical im-
plementations [4]. This research will explore the performance of par-
tially connected networks for the DEED problem.

This research proposes a novel Multi-Objective Neural Networks
trained using Differential Evolution (MONNDE). Differential Evolution
(DE) is a state of the art global optimisation algorithm [5]. The effec-
tiveness and robustness of DE makes it a suitable choice for training the
weights of the neural network. DE is however a single objective opti-
misation algorithm, although there have been multi-objective variants
of DE proposed e.g. Pareto-frontier Differential Evolution (PDE) [6].
Although the aim in multi-objective optimisation is to find multiple
solutions that are in the Pareto front, the aim here is to find the single
set of network weights that can output a Pareto front depending on the
current state of the environment and current objective weight.

The proposed MONNDE algorithm will be applied to the Dynamic
Economic Emission Dispatch (DEED) problem [1]. Many algorithms
have been applied to the DEED problem in the literature, however the
vast majority of these methods are purely optimisation algorithms and
therefore do not produce any approximate functions that are capable of
producing solutions the optimisation problem. The focus of optimisa-
tion algorithms is to find the optimum configuration of the problem
variables to maximize/minimize an objective function. The distinction
between the proposed MONNDE and previous approaches in the lit-
erature is that MONNDE learns to produce solutions on demand
whereas previous approaches view the DEED problem purely as an
optimisation problem. Once the power demand changes, a multi-ob-
jective optimisation algorithm would have to be reapplied to optimise
the power generators for the new power demand. This is not the case
for the proposed MONNDE algorithm. After the initial training period,
no further optimisation is needed for any changes to the power demand.
MONNDE builds a function approximator that incorporates the problem
characteristics which optimisation algorithms do not do. In short, the
MONNDE algorithm applies an optimisation algorithm to the neural
network which is used to adjust the problem variables for DEED. Multi-
objective optimisation algorithms optimise the DEED problem variables
directly. Of course there are many examples in the literature of neural
networks being used for economic dispatch [7]. The difference between
MONNDE and previous studies is that MONNDE evolves networks
capable of producing Pareto fronts for multi-objective problems such as
DEED. There are no such examples of this in the literature. The research
presented in this paper demonstrates that this is in fact a valid ap-
proach. The results presented later show that MONNDE performs on a
par with state of the art multi-objective algorithms and can produces
Pareto fronts for new power demands with no further optimisation after
the initial training period.

This research will also investigate how the proposed multi-objective
neural network controllers perform in an online learning environment,
i.e. when the environment is susceptible to drastic changes. The re-
search presented in this paper is at the intersection of a number of re-
search areas: multi-objective optimisation, dynamic optimisation, evo-
lutionary computing, neural networks and energy generation. The
contributions of this paper are as follows:

1. The design of a novel Multi-Objective Neural Network trained with
Differential Evolution (MONNDE) algorithm that can produce a
Pareto front for dynamic multi-objective problems.

2. A novel fitness function is proposed that incorporates a Pareto

penalty function to help the network to successfully produce a
Pareto front at each time step.

3. To compare the performance of both fully and partially connected
neural networks for producing the Pareto front

4. To investigate dynamically selecting the network topology as the
network is being optimised.

5. To apply the proposed MONNDE to the Dynamic Economic Emission
Dispatch problem for both offline and online learning, i.e. when the
fitness function dramatically changes in the form of a power gen-
erator failure.

6. To investigate the scalability of MONNDE to different size problems.
7. To test MONNDE with new power demands after the initial training

period.

The rest of this paper is structured as followed: Section 2 provides a
more detailed background into the literature on Multi-Objective Opti-
misation, Neural Networks, Partially Connected Neural Networks and
Differential Evolution. Section 3 outlines the Dynamic Economic
Emission Dispatch (DEED) problem that is used to evaluate the pro-
posed MONNDE algorithm. Section 4 describes how the MONNDE al-
gorithm is implemented. The experimental methodology is outlined in
Section 5. The results of the experiments are presented in Section 6.
Finally, Section 7 draws conclusions based on these results and outline
potential future research.

2. Background

This section will start by giving a brief overview of the relevant
literature on Multi-Objective Optimisation and its applications. This
will be then followed by an overview of Neural Networks followed by
Partially Connected Neural Networks. The section will finish with a
description of both Differential Evolution and neural network topology
and weight optimisation.

2.1. Multi-objective optimisation

Multi-objective optimisation is a sub discipline within optimisation
research that explores problems with two or more objectives. These
problems have an additional element of complexity due to the conflict
that arises when optimising multiple objectives. As the objectives are
optimised, there comes a point where by improving upon one object
will result in the deterioration of another objective. In multi-objective
optimisation problems, the goal is to find a range of solutions, where
each solution optimises the different objective with a varying level of
significance. They are all considered equally optimal as long as they
optimise at least one of the objectives better than any other solution.
These optimal solutions are referred to as Pareto optimal solutions [8].
A more strict definition of Pareto optimality states that a solution →x is
Pareto optimal if there exists no other acceptable solution →y which
would improve upon the fitness of one objective and not result in the
detriment of the fitness of another objective. Mathematically this can be
described as solution → = …u u u( , , )n1 is said to dominate solution
→ = …v v v( , , )n1 if ∀ ∈ … ⩽ ∧ ∃ ∈ … <i n u v i n u v{1, , }, {1, , }:i i i i. The Pareto

optimal set can be defined as P ≔ ∈ ≠ ∃ ′ ∈
→

′ ⪯
→∗ x g x f x f x{ Ω| Ω ( ) ( )

where Ω represents the feasible set of solutions and
→
f is the vector of

objective functions. The Pareto Front can be defined as
PF P≔ → =

→
= … ∈∗ ∗u f f x f x x{ ( ( ), , ( )| }k1 . A comprehensive overview of

multi-objective optimisation can be found the work of Coello et al. [9].
The multi-objective framework has proven to be very popular in

recent years due as it acknowledges that many real world problems
have multiple objectives. A subset of these real world problems include:
stock portfolio management [10], software construction management
[11], supply chain simulation [12] and design [13]. Some of the most
prominent multi-objective optimisation algorithms include: Non-
dominated Sorting Genetic Algorithm (NSGA-II) [14], Pareto-frontier
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