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A B S T R A C T

In order to improve the reliability of wind turbines, avoid serious accidents and reduce operation and main-
tenance (O&M) costs, it is important to effectively detect faults of wind turbines operating in harsh environment.
This paper proposes a radically data-driven fault detection and diagnosis (FDD) method for wind turbines, which
implements deep belief network (DBN). The DBN requires no knowledge of physical model, instead, it employs
historical data without any pre-selection. The method has been evaluated in a wind turbine benchmark simulink
model, in comparison with four model-based algorithms and four data-driven methods, and the results have
shown that the proposed method achieves the highest accuracy. Moreover, extensive evaluation has been taken
to analyse the robustness of proposed method, and the simulation results indicate the stable performance of
proposed method in faults diagnosis of wind turbine.

1. Introduction

Nowadays, the growing interest in wind energy has led to the wide
installation of wind turbines, which covers a large part of total elec-
tricity generation all over the world. In order to achieve the optimal
power production, wind farms are usually located in areas where wind
resources are rich, which are usually far away from the load. As a result,
it increases the cost of operation and maintenance (O&M). Besides,
harsh operating environment also increases the risk of various faults in
wind turbines. Since wind turbines of megawatt size are complex and
expensive, the maintenance costs are much higher than conventional
power sources. Therefore, there is an urging requirement to use ad-
vanced fault diagnosis schemes to maximize the operating time of wind
turbines, and consequently to reduce the O&M cost.

Since a wind turbine is a large and complex system, it is difficult for
researchers working in the filed of fault detection and diagnosis (FDD)
to test and compare different methods applied to real wind turbines. To
solve this problem, research [1] proposed a three-blade pitch-controlled
variable-speed wind turbine benchmark model with a nominal power of
4.8 MW. This known benchmark model was described in more detail in
research [2,3] and updated together with evaluation of some FDD so-
lutions in research [4]. Moreover, several FDD methods based on this
benchmark model were tested and compared with each other in [5–8].
The scheme of fault diagnosis is mainly classified into two groups,
model based and data driven.

Model-based methods are designed based on the knowledge about

the model of a specified wind turbine. In research [9], an algorithm
named wind speed based normalized current trajectory was proposed
and used to accurately detect the faults of PMSG wind turbine power
converters. A FDD scheme based on adaptive filters obtained via the
non-linear geometric approach was proposed in research [10], allowing
to obtain an interesting decoupling property with respect to uncertainty
affecting the wind turbine system. Research [11] proposed and com-
pared three fault diagnosis schemes, a cascade of two Kalman filters, a
bank of dedicated observers, and a secondary ∞H filtering mechanism.
Besides, a FDD method based on sliding mode observers was reported in
research [12] and a multi-physics graphical model-based FDD method
was developed in research [13]. All these methods have good perfor-
mance in most of fault cases, but it is hard to avoid model-reality
mismatch and the construction process are always complex.

Data-driven methods employ implicit relationships between input
and output, which is learnt from historical, to detect faults. Research
[14–18] applied supervisory control and data acquisition (SCADA) data
and unsented Kalman filter to detect the faults of gearboxes and dri-
vetrains, and achieve significant diagnostic performance. In research
[19], Gibbs sampling was used to detect change point to reveal the
evidence of fault, and Fuzzy/Bayesian network was employed to cal-
culate the probability of the occurrence of each fault. This method
could only detect some simple faults such as sensor faults while missed
the others. In [20], a robust data-driven fault diagnosis scheme based
on parity-space method was proposed, in which robust residual gen-
erators are constructed directly from available process measurements.
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Research [21] proposed a multiwavelet denoising method with data-
driven block threshold for the FDD of wind turbines. However, methods
in [20,21] had low detection rate. A FDD method based on Takagi-
Sugeno fuzzy models that are identified from input-output measure-
ments was proposed in research [22,23], but it had limited performance
in certain fault scenarios such as system fault scenario.

In short, the present FDD methods either have complex design
process or poor diagnostic performance. To solve these problems, this
paper proposes a radically data-driven method for FDD of wind turbines
applying DBN. DBN was initially proposed in [24–26], which was
motivated by the establishment and simulation of the neural network of
the human brain. It imitates the mechanism of the human brain to in-
terpret data, such as images, sound and texts. Compared with tradi-
tional machine learning algorithms, such as SVM [27,28], artificial
neural networks [29,30] (ANNs), DBN has better performance in
transfer learning. Hence, it has been continuously improved and ap-
plied to various fields in recent years [31–35]. To validate the proposed
method, the data obtained from a wind turbine benchmark model in
different fault scenarios is employed to test the performance of FDD.
The fault diagnosis results are compared with those obtained from four
traditional model-based methods, estimation-based solution (EB), up-
down counter solution (UDC), combined observer and Kalman filter
solution (COK), general fault model solution (GFM), and four data-
driven methods, including naive Bayes classifier based solution (NB), K-
nearest neighbor classifier based solution (KNN), random forest classi-
fier based solution (RF), decision tree classifier based solution (DT). The
simulation results demonstrate the effectiveness and superiority of the
proposed method compared with other methods.

The main contributions of this paper include: (I) to propose a su-
perior data-driven FDD for the wind turbine system; (II) to provide FDD
of system faults which are hard to detect with good performance; (III) to
validate the strong robustness, wide practicability and high reliability
of the proposed method.

2. Wind turbine benchmark model

In order to evaluate the performance of various FDD methods ap-
plied to wind turbines, research [1] provided an effective wind turbine
benchmark model for researchers working in the filed of fault diagnosis.

2.1. Overview of the wind turbine model

The benchmark model is a three-blade horizontal-axis turbine with
variable speed and pitch angle PI control, which has a rated power of
4.8 MW. There are five sub-systems in this model, which are wind
model, blade and pitch system, drive train, generator and converter,
controller. The overview of this model is shown in Fig. 1.

The variables in these subsystems are defined as follows: υw re-
presents the wind speed acting on the turbine blades; τ τ τ, ,w r g represent
the torque of wind, rotor and generator, respectively; ωr and ωg are the
rotational speed of the rotor and generator, respectively; βr is the re-
ference to the pitch position; τg,r is the torque reference to the gen-
erator; Pr is the power reference to the wind turbine; Pg is the power

produced by the generator; υ ω ω τ, , ,w,m r,m g,m g,m are the measured values
of the related parameters.

2.1.1. Blade and pitch system
This system consists of aerodynamic system and pitch system. The

aerodynamic system is modelled as a torque acting on the blades, which
can be expressed as:
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where C λ t β t( ( ), ( ))q is a mapping of the torque coefficients. Each blade
is assumed to be a third of the torque given by the three blades. The
hydraulic pitch system is modelled as a closed-loop transfer function:
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where β s β s( ), ( )r are the measured pitch angle and its reference; ς ω, n
represent the damping factor and natural frequency respectively.

2.1.2. Drive train
The system transfers torque from the rotor to the generator. It can

be modelled by a two-mass model:
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Jr: Moment of inertia of the low-speed shaft;
Kdt: Torsion stiffness of the drive train;
Bdt: Torsion damping coefficient of the drive train;
Bg: Viscous friction of the high-speed shaft;
Ng: Gear ratio;
Jg: Moment of inertia of the high-speed shaft;
ηdt: Efficiency of the drive train;
θ t( )Δ : Torsion angle of the drive train.

2.1.3. Generator and converter
This system is modelled by a first-order transfer function:
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where agcis the parameter of generator and converter dynamics. The
power produced by the generator is given by

=P t η t ω t τ t( ) ( ) ( ) ( )g g g g (7)

where ηgis the efficiency of the generator.

2.1.4. Controller
This benchmark model mainly focuses on the accommodation of the

wind turbine, therefore the control scheme is simple. The controller
consists of two modes. Mode 1 gets the optimal value through setting
the pitch reference to zero ( =β n[ ] 0r ). Mode 2 mainly uses a PI con-
troller to keep ωg at the nominal generator speed ωnom. The control
mode switches from mode 1 to mode 2 if

⩾ ∨ ⩾P n P n ω n ω[ ] [ ] [ ]g r g nom (8)

and the control mode switches from mode 2 to mode 1 if

⩽ −ω n ω ω[ ]g nom Δ (9)

where ωΔ is a small offset subtracted from the nominal generator speed
to introduce some hysteresis in the switching scheme.

g,r

g,m, g,m, Pgr,m
m , w,mr

gr

gr
w Blade &

Pitch System Driven Tarin Generator & 
Converter

Controller

Pr

Fig. 1. An illustration of the benchmark model.
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