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A B S T R A C T

The variable and intermittent nature of large-scale wind power integration makes day-ahead unit commitment
(UC) decision-making difficult. This paper establishes a novel and effective UC model with wind power in-
tegration by optimizing the utilization of the forecast error and reserve decision. First, considering the temporal
feature of the UC model, a time sequence segment-fitting method (TSFM) for the wind power forecast error is
presented, in which the non-parametric fitting method is used to address the ‘fat-tail’ effect of error distribution.
Second, according to the probability intervals of the forecast error and characteristic of the reserve, a new
reserve decision method is proposed to define three classes of reserve strategies and optimize the capacity for
each type of reserve. Third, a UC model with time-varying confidence levels is established by introducing
conditional value at risk (CVaR) and chance-constrained programming (CCP), and is linked with the TSFM. This
novel model can balance the costs of fuel, various reserves, load shedding risk, and wind curtailment risk, which
can improve the economy of the power grid operation. Finally, an improved hybrid particle swarm optimization
algorithm with a heuristic searching strategy is applied to solve this multivariate mixed integer non-linear
programming problem. The simulation results verify the effectiveness and practicality of the model proposed.

1. Introduction

The ever-increasing penetration of large-scale wind power into the
power grid has been yielding great economic benefits and challenges to
the operation and dispatch of power systems in China. Wind power is
regarded as green energy because of its performance in the carbon
emission reduction of the power system [1]. However, wind power
generation introduces uncertainty into power system operation and
decision-making, such as unit commitment (UC), because it is difficult
to accurately forecast due to its inherent variability and intermittency
[2]. In fact, UC decision integrated wind power has become a sig-
nificant challenge in power system operation in recent years.

In order to deal with the fluctuation of wind power, the utilization
of wind power forecast value, the reserve decision for wind power
fluctuation, and the expression of stochastic wind power are generally
considered as the most severe problems in UC with wind power in-
tegration [3].

To absorb more wind power by the UC decision process, the de-
scription of wind power forecast or error data in the UC model should

be accurately addressed to reduce the impact of wind power un-
certainty [4]. Therefore, probability density functions (PDFs) of the
wind power forecast or error values have been recently studied. PDFs
such as Normal and Weibull distributions have been generally used to
fit the distribution of wind power forecast error [5–7]; however, the
‘fat-tailed’ effect of forecast error results in unsatisfactory fitting. To
improve the fitting accuracy, forecast error has been separated into
different bins, fitted in each bin with Beta distribution, and weighted
[8]; however, the weighted Beta distribution approaches infinity at the
bounds. While, the t location-scale distribution has been used in [9] and
a mixed distribution method has been proposed in [10], neither are
verified by rigorous test. The non-parametric estimation method has
better performance in fitting accuracy compared with above traditional
parametric methods, although it has disadvantages associated with
calculation sensibility and large sample complexity [11]. Based on the
various fitting methods above, forecast and error data have been used
in the UC model to improve the accuracy of the UC decision [12–14].
However, the time-varying feature of forecast or error data is not
considered, which has been demonstrated in short-term prediction
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studies [15]. The forecast error distribution varies remarkably over
time, and can significantly influence the fitting accuracy and UC deci-
sions [14]. Thus, knowing how to capture the time-varying feature of
the error is important for effectively improving the utilization of the
error data on UC, and needs to be further studied.

Due to the uncertainty of wind power, it is a challenge to choose the
type of reserve and economically optimize its capacity in the UC model
with integrated wind power, because a small change of reserve capacity
or type may initiate a new generator and thus significantly raise op-
erational costs. Besides the traditional power system spinning reserve,
various kinds of reserve such as demand response (DR), battery energy
storage and electric vehicle (EV) have been widely used to provide
reserve for wind power [16–18]. Additionally a hydro-thermal co-
ordination method has been used as an essential reserve in UC decision
[19]. Fuzzy energy and reserve co-optimization method has been pro-
posed to schedule the reserve of the power system including uncertain
renewable energy [20]. For the optimization of reserve capacity, an
optimal model of day-ahead spinning reserve requirement has been
proposed while considering the plug-in electric vehicle in [18]. Using a
priori analytical method, a formal mathematical framework has been
presented to determine the operating reserve requirements [21]. In-
stead of conventional predicted intervals, an adjustable intervals opti-
mization model has been presented in [22] to schedule the reserve to
accommodate the wind power variation and uncertainty. In [23], a two-
stage stochastic programming model has been proposed to procure the
required load-following reserves from both generation and demand side
resources under high wind power penetration. As mentioned above,
different types of reserve and optimization of reserve capacity have
been discussed. However, in recent studies, coordination of reserve
types and optimization of the reserve capacity have not been combined
to cope with wind power uncertainty, and the time varying feature of

forecast error has not been considered into the reserve decision yet, so
these factors need to be further considered.

According to the expression of wind power stochasticity, UC models
are generally classified into several categories as follows: scenario-
based stochastic programming, chance-constrained programming
(CCP), robust optimization, interval programming and risk-based op-
timization, etc., [24–30]. In [24], scenario-based stochastic program-
ming is used to simulate wind uncertainty, and wind-hydro-thermal
coordination problem is established. A risk-based day-ahead unit
commitment model considering the risks of load shedding and wind
curtailment has been presented to deal with uncertain wind power in
[25]. The robust optimization fixes the reserve capacity in the worst-
case scenario; therefore, the results are relatively conservative and apt
to make the costs high [26]. The ‘disable capacity’ has been proposed to
reveal the risk associated with wind power without providing a method
to fix the confidence level [27]. An interval optimization combined
with the point estimation method has been proposed to model and solve
the UC problem in [28]. A hierarchical UC model using different
scheduling strategies in various intervals has been proposed in [29], but
the method to divide the two interval has not been mentioned. On the
other hand, CCP which sets the constraints with stochastic variables is
widely used in UC decision with wind power integration; however, a
certain probability limit need to be set ahead of time to ensure the
proper utilization of wind power [30]. Considering the time-varying
feature of forecast error and requirement of reserve decision, CCP is
regarded as suitable method to establish a new UC model in this paper,
because the optimal decision can be made in each time period of de-
cision horizon by conveniently flexible confidence level setting.

Consequently, taking the time-varying feature of forecast error and
the requirement of reserve decision into account, a more practical UC
model with integrated wind power is desirable. Thus, this paper

Nomenclature

Constants

a, b and c coefficients of the unit cost
Dt
ri, Ut

ri ramp-down/ramp-up limit of unit i
fk(x) probability density at x
h bandwidth of non-parameter fitting method
Ng number of generators that can be conducted
NW number of wind farms
pLt load demand at time t
pwjt wind power prediction of wind farm j during time period t
pimax maximum generation limit of unit i
pimin minimum generation limit of unit i
p(ef) PDF of the wind power forecast error
Rs t

u
. up-spinning reserve requirement at time t

Rs t
d
. down-spinning reserve requirement at time t

rup
ER, rdown

ER unit cost of up ER/down ER
rup

TR, rdown
TR unit cost of TR-up/TR-down

rLL, rCW unit cost of LL/CW
T total scheduling period
Tion, Tioff minimum on/off time intervals of unit i
uit state of unit i during time period t
xit on/off time intervals of unit i before time period t
Xi sample datum
αkt, βkt confidence interval parameter during period t, k= 1 or 2
ψi, hot start cost of unit i
ζi cold start cost of unit i
τi hot start time of unit i
μ mean of distribution
σ standard deviation of distribution
Δt time span of the adjacent time

Variables

CostERdown(βkt) costs of down extra reserve
CostERup(αkt) costs of up extra reserve
CVaRTR

up, CVaRTR
down average loss value of upward/downward TR

over VaR
CVaRLL, CVaRCW average loss value of LL/CW over VaR
CostLLCW(αk, βk) risk cost of LLCW
CostTR(αk, βk) risk cost of TR
E(αkt,βkt) ER cost
F p u( , )i

t
i
t fuel cost of traditional units

pit generation of unit i during time period t
S x u( , )i

t
i
t start-up cost of traditional units

uit state of unit i during time period t
V α β( , )k

t
k
t risk cost of TR and LLCW

TR-up/TR-down traditional fixed up/down reserve
Zα1/Za2/Zβ1/Zβ2 quantiles of confidence levels
α1/a2/β1/β2 confidence levels of chance constraints

Acronyms

CW curtailment of wind
CVaR conditional value at risk
ER extra reserve
LL loss of load
OUFM overall unsegmented fitting method
TSFM time sequence segment-fitting method
TCL time-varying confidence levels
TR traditional fixed reserve
UCL unique confidence level
VaR value at risk
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