
JID:YJSCO AID:1844 /FLA [m1G; v1.235; Prn:9/04/2018; 11:27] P.1 (1-23)

Journal of Symbolic Computation ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Symbolic Computation

www.elsevier.com/locate/jsc

Nominal unification with atom-variables ✩

Manfred Schmidt-Schauß, David Sabel, Yunus D.K. Kutz

Goethe-University Frankfurt am Main, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 March 2017
Accepted 25 June 2017
Available online xxxx

Keywords:
Program transformations
Nominal unification
Functional languages
Atom-variables
Correctness

The problem of nominal unification where variables are allowed 
for atoms, and computing a complete set of unifiers is considered. 
The complexity is shown to be NP-complete, while for special 
cases there are polynomial time algorithms. The main result is 
a novel algorithm to compute a complete set of unifiers which 
performs lazy guessing of equality or disequality of atom-variables, 
runs in NP time, and the collecting variant has more chances 
to keep the complete set of unifiers small. Applications of this 
algorithm are in reasoning about program transformations in 
higher order functional languages. We also present a variant of the 
unification algorithm that delays guessing and checking solvability, 
and produces a single most general unifier.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Motivation, applications and goals The initial motivation to introduce and investigate nominal rea-
soning and unification was the observation that formalizations of proofs in higher-order deduction 
systems like Isabelle (Nipkow et al., 2002; Urban and Kaliszyk, 2012) would profit from a more 
machine-oriented formalization of reasoning about α-equivalence and for arguments in automated 
proofs that employ renaming of bound variables by fresh names. This leads to the development and 
application of nominal theories and techniques (a recent tutorial is Pitts, 2016, a broad overview is 
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Pitts, 2013) and also of nominal unification (Urban et al., 2003; Calvès and Fernández, 2008; Levy and 
Villaret, 2010).

An often used assumption in the technique of nominal reasoning is that variable names (called 
atoms) in higher-order binders are concrete, and not abstract, and that modifying the terms is done 
by applying atom permutations to terms and replace atoms, irrespective of their binding status (see 
Urban et al., 2003).

In the application field of verifying program transformations in higher order languages using syn-
tactical reasoning and the operational semantics (for instance, defined by a small step reduction 
relation), a foundational reasoning task is to compute overlaps between left hand sides of small-
step-reduction rules and transformation rules employing a unification algorithm. This task is similar 
to the computation of critical pairs in term rewrite systems (variants for nominal syntax were re-
cently investigated by Ayala-Rincón et al., 2016). A difference is that instead of all overlaps only those 
overlaps have to be taken into account which match the reduction strategy given by the operational 
semantics.

An algorithm for computing overlaps for a class of higher-order program calculi is described in 
Schmidt-Schauß and Sabel (2016): It is an algorithm for unification of higher-order expressions with 
meta-variables, where (among others) expression-variables and variable-variables are used. As a con-
sequence, in that approach, there are no concrete atoms, but “abstract” atoms. For this application it 
is indispensable to compute complete sets of unifiers. As correctness criterion, syntactical equality is 
used instead of alpha-equivalence. The treatment of alpha-equivalence and binding constraints uses 
so-called non-capture constraints. Further reasoning on correctness and executing reductions and/or 
transformations requires to also use and reason about alpha-renamings, which is, however, not sup-
ported by the unification method in Schmidt-Schauß and Sabel (2016).

In this paper we focus on a combination of the approaches and investigate nominal unification 
with the feature of abstract atoms (called atom-variables).

We focus on unification of nominal terms with atom-variables, since it is a basic reasoning task 
required by several reasoning algorithms. Hence, the goal of the paper is to construct a unification 
algorithm for higher-order meta-expressions which comprise atom-variables. In contrast to Schmidt-
Schauß and Sabel (2016), we leave the task of combining the methods also with extra constructs like 
context variables, letrec-constructs and binding chains (which is required for sophisticated reasoning 
in call-by-need lambda calculi) for further research.

We illustrate the differences between nominal unification with concrete atoms and on the other 
hand with atom-variables. As a quite small example consider the equation λx.λy.x .= λx.λy.y. If x, y
are atoms, then the equation is ground on both sides (there are no unification variables) and there is 
no solution: nominal unification only checks alpha-equivalence which results in the unsolvable equa-
tion x .= y. But, if x, y represent unification variables which can be instantiated by atoms, then there 
exists a solution which instantiates x, y by the same atom a. Furthermore, nominal unification with 
atom-variables generalizes usual nominal unification, if so called freshness constraints are allowed 
in the input, since they can enforce disequality of instantiations of atom-variables. For instance, the 
freshness constraint x#y ensures that atom-variables x and y must not be instantiated by the same 
atom. Thus, the equation λx.λy.x .= λx.λy.y together with freshness constraint x#y represents usual 
nominal unification and thus has no solution.

As a motivating example for the usefulness of atom-variables in applications, we consider the 
following instance of a call-by-value beta reduction rule with 3-ary lambda expressions where the 
arguments are variables, which may be enforced by the syntax. As a small-step reduction rule one 
would usually write

(λ(x1, x2, x3).e) (y1, y2, y3) → e[y1/x1, y2/x2, y3/x3]
where y1, y2, y3 are variables and implicitly the binders x1, x2, x3 are meant to be different. To (syn-
tactically) reason on such a rule, it has to be represented by using meta-syntax. However, with usual 
nominal syntax (with atoms but without atom-variables), it is insufficient to represent the rule as

(λ(a1,a2,a3).S) (b1,b2,b3) → S[b1/a1,b2/a2,b3/a3],
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