## **ARTICLE IN PRESS**

Journal of Symbolic Computation ••• (••••) •••-•••



Contents lists available at ScienceDirect

## Journal of Symbolic Computation



www.elsevier.com/locate/jsc

# On the complexity of integer matrix multiplication

### David Harvey<sup>a</sup>, Joris van der Hoeven<sup>b</sup>

<sup>a</sup> School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
<sup>b</sup> CNRS, LIX, École polytechnique, 91128 Palaiseau Cedex, France

#### ARTICLE INFO

Article history: Received 12 November 2014 Accepted 9 October 2016 Available online xxxx

MSC: 68W30 68Q17 68W40

Keywords: Matrix multiplication Complexity Algorithm FFT Bluestein reduction

#### ABSTRACT

Let M(n) denote the bit complexity of multiplying *n*-bit integers, let  $\omega \in (2, 3]$  be an exponent for matrix multiplication, and let  $\lg^{n} n$  be the iterated logarithm. Assuming that  $\log d = O(n)$  and that  $M(n)/(n \log n)$  is increasing, we prove that  $d \times d$  matrices with *n*-bit integer entries may be multiplied in

$$O(d^2 \mathsf{M}(n) + d^{\omega} n \, 2^{O(\lg^* n - \lg^* d)} \mathsf{M}(\lg d) / \lg d)$$

bit operations. In particular, if *n* is large compared to *d*, say  $d = O(\log n)$ , then the complexity is only  $O(d^2 M(n))$ .

© 2017 Elsevier Ltd. All rights reserved.

#### 1. Introduction

In this paper we study the complexity of multiplying  $d \times d$  matrices whose entries are integers with at most *n* bits. We are particularly interested in the case that *n* is very large compared to *d*, say  $d = O(\log n)$ . All complexity bounds refer to deterministic bit complexity, in the sense of the multi-tape Turing model (Papadimitriou, 1994).

Matrices with large integer coefficients appear naturally in several areas. One first application is to the efficient high precision evaluation of so-called holonomic functions (such as exp, log, sin,

https://doi.org/10.1016/j.jsc.2017.11.001

0747-7171/© 2017 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Harvey, D., van der Hoeven, J. On the complexity of integer matrix multiplication. J. Symb. Comput. (2017), https://doi.org/10.1016/j.jsc.2017.11.001

E-mail addresses: d.harvey@unsw.edu.au (D. Harvey), vdhoeven@lix.polytechnique.fr (J. van der Hoeven).

#### D. Harvey, J. van der Hoeven / Journal of Symbolic Computation ••• (••••) •••-•••

Bessel functions, and hypergeometric functions) using a divide and conquer technique (Chudnovsky and Chudnovsky, 1990; Haible and Papanikolaou, 1997; van der Hoeven, 1999, 2001, 2007). Another application concerns recent algorithms for computing the *L*-series of algebraic varieties (Harvey, 2014, 2015; Harvey and Sutherland, 2014, 2016; Harvey et al., 2016a). The practical running time in these applications is dominated by the multiplication of matrices with large integer entries, and it is vital to have a highly efficient implementation of this fundamental operation. Typical parameters for these applications are *n* around  $10^8$  bits, and *d* around 10.

In this paper, we focus mainly on theoretical bounds. We write  $M_d(n)$  for the cost of multiplying  $d \times d$  matrices with *n*-bit integer entries, and  $M(n) := M_1(n)$  for the cost of multiplying *n*-bit integers. We will also write  $M_{R,d}(n)$  for the algebraic complexity of multiplying  $d \times d$  matrices whose entries are polynomials of degree < n over an abstract effective ring *R*, and  $M_R(n) := M_{R,1}(n)$ .

Schönhage and Strassen (1971) used fast Fourier transforms (FFTs) to prove that  $M(n) = O(n \log n \log \log n)$  for large *n*. Fürer (2009) improved this to  $M(n) = O(n \log n 2^{O(\lg^* n)})$  where  $\lg^*$  is the iterated logarithm, i.e.,

 $\begin{aligned} & \lg n & := \lceil \log_2 n \rceil, \\ & \lg^* n & := \min\{k \in \mathbb{N} : \lg^{\circ k} n \leqslant 1\}, \\ & \lg^{\circ k} & := \lg \circ \cdots \circ \lg, \\ & & k \times \end{aligned}$ 

and this was recently sharpened to  $M(n) = O(n \log n 8^{\lg^* n})$  (Harvey et al., 2016b). The best currently known bound (Cantor and Kaltofen, 1991) for  $M_R(n)$  is  $M_R(n) = O(n \log n \log \log n)$ ; if R is a ring of finite characteristic this may be improved to  $M_R(n) = O(n \log n 8^{\lg^* n})$  (Harvey et al., 2017).

The algebraic complexity of  $d \times d$  matrix multiplication is usually assumed to be of the form  $O(d^{\omega})$ , where  $\omega$  is a so-called exponent of matrix multiplication (von zur Gathen and Gerhard, 2003, Ch. 12). Classical matrix multiplication yields  $\omega = 3$ , and Strassen's algorithm (Strassen, 1969) achieves  $\omega = \log 7/\log 2 \approx 2.807$ . The best currently known exponent  $\omega < 2.3728639$  was found by Le Gall (Le Gall, 2014; Coppersmith and Winograd, 1987).

When working over the integers and taking into account the growth of coefficients, the general bound for matrix multiplication specialises to

 $\mathsf{M}_d(n) = O(d^{\omega}\mathsf{M}(n + \lg d)).$ 

Throughout this paper we will enforce the very mild restriction that  $\log d = O(n)$ . Under this assumption the above bound simplifies to

$$\mathsf{M}_d(n) = O(d^{\omega}\mathsf{M}(n)).$$

The main result of this paper is the following improvement.

**Theorem 1.** Assume that  $M(n)/(n \log n)$  is increasing. Let C > 1 be a constant. Then

$$M_{d}(n) = O(d^{2}M(n) + d^{\omega}n 2^{O(\lg^{*} n - \lg^{*} d)}M(\lg d) / \lg d),$$
(1)

uniformly for  $n \ge 2$  and  $d \ge 1$ , under the condition that  $\lg d \le Cn$ .

In particular, if n is large compared to d, say  $d = O(\log n)$ , then (1) simplifies to

$$\mathsf{M}_d(n) = O\left(d^2\mathsf{M}(n)\right). \tag{2}$$

This bound is essentially optimal (up to constant factors), in the sense that we cannot expect to do better for d = 1, and the bound grows proportionally to the input and output size as a function of d.

The new algorithm has its roots in studies of analogous problems in the algebraic complexity setting. When working over an arbitrary effective ring R, a classical technique for multiplying polynomial matrices is to use an evaluation-interpolation scheme. There are many different evaluation-interpolation strategies (van der Hoeven, 2010, Sections 2.1–2.3) such as Karatsuba, Toom–Cook, FFT,

Please cite this article in press as: Harvey, D., van der Hoeven, J. On the complexity of integer matrix multiplication. J. Symb. Comput. (2017), https://doi.org/10.1016/j.jsc.2017.11.001

Download English Version:

## https://daneshyari.com/en/article/6861167

Download Persian Version:

https://daneshyari.com/article/6861167

Daneshyari.com