On the complexity of integer matrix multiplication

David Harvey ${ }^{\text {a }}$, Joris van der Hoeven ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
${ }^{\text {b }}$ CNRS, LIX, École polytechnique, 91128 Palaiseau Cedex, France

A R T I C L E I N F O

Article history:

Received 12 November 2014
Accepted 9 October 2016
Available online xxxx

MSC:

68W30
68Q17
68W40

Keywords:

Matrix multiplication
Complexity
Algorithm
FFT
Bluestein reduction

A B S T R A C T

Let $\mathrm{M}(n)$ denote the bit complexity of multiplying n-bit integers, let $\omega \in(2,3]$ be an exponent for matrix multiplication, and let $\lg ^{*} n$ be the iterated $\log a r i t h m$. Assuming that $\log d=O(n)$ and that $\mathrm{M}(n) /(n \log n)$ is increasing, we prove that $d \times d$ matrices with n-bit integer entries may be multiplied in

$$
O\left(d^{2} \mathrm{M}(n)+d^{\omega} n 2^{O\left(\lg ^{*} n-\lg ^{*} d\right)} \mathrm{M}(\lg d) / \lg d\right)
$$

bit operations. In particular, if n is large compared to d, say $d=$ $O(\log n)$, then the complexity is only $O\left(d^{2} \mathrm{M}(n)\right)$.
© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we study the complexity of multiplying $d \times d$ matrices whose entries are integers with at most n bits. We are particularly interested in the case that n is very large compared to d, say $d=O(\log n)$. All complexity bounds refer to deterministic bit complexity, in the sense of the multi-tape Turing model (Papadimitriou, 1994).

Matrices with large integer coefficients appear naturally in several areas. One first application is to the efficient high precision evaluation of so-called holonomic functions (such as exp, log, sin,

[^0]Bessel functions, and hypergeometric functions) using a divide and conquer technique (Chudnovsky and Chudnovsky, 1990; Haible and Papanikolaou, 1997; van der Hoeven, 1999, 2001, 2007). Another application concerns recent algorithms for computing the L-series of algebraic varieties (Harvey, 2014, 2015; Harvey and Sutherland, 2014, 2016; Harvey et al., 2016a). The practical running time in these applications is dominated by the multiplication of matrices with large integer entries, and it is vital to have a highly efficient implementation of this fundamental operation. Typical parameters for these applications are n around 10^{8} bits, and d around 10 .

In this paper, we focus mainly on theoretical bounds. We write $M_{d}(n)$ for the cost of multiplying $d \times d$ matrices with n-bit integer entries, and $\mathrm{M}(n):=\mathrm{M}_{1}(n)$ for the cost of multiplying n-bit integers. We will also write $\mathrm{M}_{R, d}(n)$ for the algebraic complexity of multiplying $d \times d$ matrices whose entries are polynomials of degree $<n$ over an abstract effective ring R, and $M_{R}(n):=M_{R, 1}(n)$.

Schönhage and Strassen (1971) used fast Fourier transforms (FFTs) to prove that $\mathrm{M}(n)=$ $O(n \log n \log \log n)$ for large n. Fürer (2009) improved this to $M(n)=O\left(n \log n 2^{O\left(\lg ^{*} n\right)}\right.$) where $\lg ^{*}$ is the iterated logarithm, i.e.,

$$
\begin{aligned}
\lg n & :=\left\lceil\log _{2} n\right\rceil, \\
\lg ^{*} n & :=\min \left\{k \in \mathbb{N}: \lg ^{\circ k} n \leqslant 1\right\}, \\
\lg ^{\circ k} & :=\underset{k \times}{\lg \circ \ldots \circ \lg ,}
\end{aligned}
$$

and this was recently sharpened to $\mathrm{M}(n)=O\left(n \log n 8^{\lg ^{*} n}\right.$) (Harvey et al., 2016b). The best currently known bound (Cantor and Kaltofen, 1991) for $\mathrm{M}_{R}(n)$ is $\mathrm{M}_{R}(n)=O(n \log n \log \log n)$; if R is a ring of finite characteristic this may be improved to $M_{R}(n)=O\left(n \log n 8^{\lg ^{*} n}\right)$ (Harvey et al., 2017).

The algebraic complexity of $d \times d$ matrix multiplication is usually assumed to be of the form $O\left(d^{\omega}\right)$, where ω is a so-called exponent of matrix multiplication (von zur Gathen and Gerhard, 2003, Ch. 12). Classical matrix multiplication yields $\omega=3$, and Strassen's algorithm (Strassen, 1969) achieves $\omega=\log 7 / \log 2 \approx 2.807$. The best currently known exponent $\omega<2.3728639$ was found by Le Gall (Le Gall, 2014; Coppersmith and Winograd, 1987).

When working over the integers and taking into account the growth of coefficients, the general bound for matrix multiplication specialises to

$$
\mathrm{M}_{d}(n)=O\left(d^{\omega} \mathrm{M}(n+\lg d)\right)
$$

Throughout this paper we will enforce the very mild restriction that $\log d=O(n)$. Under this assumption the above bound simplifies to

$$
\mathrm{M}_{d}(n)=O\left(d^{\omega} \mathrm{M}(n)\right) .
$$

The main result of this paper is the following improvement.
Theorem 1. Assume that $\mathrm{M}(n) /(n \log n)$ is increasing. Let $\mathrm{C}>1$ be a constant. Then

$$
\begin{equation*}
\mathrm{M}_{d}(n)=O\left(d^{2} \mathrm{M}(n)+d^{\omega} n 2^{O\left(\lg ^{*} n-\lg ^{*} d\right)} \mathrm{M}(\lg d) / \lg d\right), \tag{1}
\end{equation*}
$$

uniformly for $n \geqslant 2$ and $d \geqslant 1$, under the condition that $\lg d \leqslant C n$.
In particular, if n is large compared to d, say $d=O(\log n)$, then (1) simplifies to

$$
\begin{equation*}
\mathrm{M}_{d}(n)=O\left(d^{2} \mathrm{M}(n)\right) . \tag{2}
\end{equation*}
$$

This bound is essentially optimal (up to constant factors), in the sense that we cannot expect to do better for $d=1$, and the bound grows proportionally to the input and output size as a function of d.

The new algorithm has its roots in studies of analogous problems in the algebraic complexity setting. When working over an arbitrary effective ring R, a classical technique for multiplying polynomial matrices is to use an evaluation-interpolation scheme. There are many different evaluationinterpolation strategies (van der Hoeven, 2010, Sections 2.1-2.3) such as Karatsuba, Toom-Cook, FFT,

https://daneshyari.com/en/article/6861167

Download Persian Version:
https://daneshyari.com/article/6861167

Daneshyari.com

[^0]: E-mail addresses: d.harvey@unsw.edu.au (D. Harvey), vdhoeven@lix.polytechnique.fr (J. van der Hoeven).

