ARTICLE IN PRESS

Knowledge-Based Systems 000 (2017) 1-7

[m5G;October 23, 2017;13:6]

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Partial attribute reduction approaches to relation systems and their applications

Guilong Liu*, Zheng Hua

School of Information Science, Beijing Language and Culture University, Beijing, 100083, China

ARTICLE INFO

Article history: Received 25 January 2017 Revised 10 October 2017 Accepted 12 October 2017 Available online xxx

Keywords: Discernibility matrix Lower approximation reduction Upper approximation reduction Relational decision system Relation system X-lower approximation reduction

1. Introduction

Attribute reduction is the process whereby dispensable attributes are removed from a given database of knowledge while maintaining consistency. It is among the most important topics in rough set theory [1,2]. Pawlak was the first to propose the concept of attribute reduction for decision tables. Pawlak and Skowron [3,4], Skowron and Rauszer [5] proposed an algorithm for attribution reduction based on a discernibility matrix with equivalence relations. Skowron and Rauszer [6] were the first to propose the concept of the discernibility matrix. As this matrix is intuitive and easy to understand, attribute reduction based on it is efficient. Many authors [7–15] have proposed similar algorithms with an extended discernibility matrix for different types of attribute reduction. For example, Zhang et al. [16] studied distributive reduction with an appropriate discernibility matrix. Liu et al. [17] developed a unified algorithm based on invariant matrices for three types of reduction in decision tables.

An equivalence relation is too restrictive for many applications; therefore, several authors [18–20] have recently studied certain types of reduction using dominance relation-based attribute reduction. For a given decision table, Wei et al. [21] derived a compacted decision table that can preserve all information contained in the original. Yamany et al. [22] proposed an intelligent optimization method called the "flower search algorithm," which adap-

* Corresponding author.

E-mail address: liuguilong@blcu.edu.cn (G. Liu).

https://doi.org/10.1016/j.knosys.2017.10.014 0950-7051/© 2017 Elsevier B.V. All rights reserved.

ABSTRACT

Attribute reduction has long been an active subject of research in rough set theory, and constitutes an important step in data analysis. A relation system is an extension of a typical information system. This paper proposes the concepts of *X*-lower and -upper approximation reductions, and develops corresponding reduction algorithms for general relation systems. By using these types of reduction, we derive lower and upper approximation reductions for relation decision systems. As a special case, we obtain a reduction algorithm for the positive region for decision tables. Finally, we provide two examples from the University of California–Irvine (UCI) datasets to verify our theoretical results.

© 2017 Elsevier B.V. All rights reserved.

tively searches for optimal attributes, for the fitness function used in rough sets-based classification. Liu et al. [23] proposed a general attribute reduction algorithm for relation decision systems. Zhang et al. [24], Zhang and Xu [25,26] extended the concepts of the lower and upper approximation reduction to ordered information systems. In 2012, Xu et al. [27] investigated upper approximation reduction in an ordered information system with fuzzy decision making. Shao et al. [28] investigated granular reduction in formal fuzzy contexts. Sun et al. [29] recently studied multicriterion group decision making based on multi-granulation fuzzy rough sets over two universes. Ju et al. [30] considered the design of cost-sensitive rough set models using a multi-granulation strategy.

A number of researchers [31–36] have developed approximation reduction methods based on general binary relations. This paper considers this type of reduction in general relation systems. We first define the concept of X-lower approximation reduction and its dual reduction for relation systems. An X-lower approximation reduction is a partial reduction. As an application of such a reduction, we derive lower and upper approximation reduction algorithms. As a special case, we establish the relationship between positive region reduction and lower approximation reduction in a decision table.

The remainder of the paper is organized as follows: In Section 2, we recall some basic notions and notations related to relations and relation systems. In Section 3, we propose the concept of, and provide an algorithm for, *X*-lower approximation reduction. As the dual of *X*-lower approximation reduction, Section 4 consid-

Please cite this article as: G. Liu, Z. Hua, Partial attribute reduction approaches to relation systems and their applications, Knowledge-Based Systems (2017), https://doi.org/10.1016/j.knosys.2017.10.014

2

ARTICLE IN PRESS

ers X-upper approximation reduction. Sections 5 and 6 detail lower and upper approximation reduction for relation decision systems, respectively. Section 7 shows that the positive region reduction for decision tables is a special case of lower approximation reduction and Section 8 provides two examples to verify our theoretical results. Section 9 contains the conclusions of this study.

2. Preliminaries

In this section, we rehearse some basic definitions and properties of binary relations and relation decision systems. Let $U = \{x_1, x_2, ..., x_n\}$ be a finite set of objects called the universal set. Suppose that *R* is an arbitrary relation on *U*. Recall that the left and right *R*-relative sets of an element *x* in *U* are defined as

 $l_R(x) = \{y | y \in U, yRx\}$ and $r_R(x) = \{y | y \in U, xRy\},\$

respectively. Based on the right *R*-relative set, the lower and upper approximations of $X \subseteq U$ are defined as [15]

 $\underline{R}(X) = \{x | x \in U, r_R(x) \subseteq X\} \text{ and } \overline{R}(X) = \{x | x \in U, r_R(x) \cap X \neq \emptyset\},$ respectively.

Wang et al. [35] proposed the concept of relation decision systems, and we generalize this concept such that the decision attribute no longer needs to be an equivalence relation [37].

Definition 2.1 [35,37]. Let $U = \{x_1, x_2, ..., x_n\}$ be a finite universal set and *A* be a family of binary relations on *U*. Then, (U, A) is called a relation system. In addition, if $A = C \cup D$ and $C \cap D = \emptyset$, $(U, C \cup D)$ is called a relation decision system, *C* is called the condition attribute set and *D* the decision attribute set. If $R_C = \bigcap_{R \in C} R \subseteq R_D = \bigcap_{d \in D} d$, $(U, C \cup D)$ is said to be consistent; otherwise, $(U, C \cup D)$ is said to be inconsistent.

The following proposition is elementary, and hence we omit a proof:

Proposition 2.1. Let (U, A) be a relation system and X, $Y \subseteq U$.

(1) If $B \subseteq A$, then $R_A \subseteq R_B$ and $R_B(X) \subseteq R_A(X)$.

(2) If $X \subseteq Y$, then $\underline{R}_A(X) \subseteq \underline{R}_A(Y)$.

(3) $R_A(X) \cup R_A(Y) \subseteq R_A(X \cup Y)$.

3. The X-lower approximation reduction for relation systems

Let (U, A) be a relation system. For any given subset $X \subseteq U$, we consider a reduction type that keeps the lower approximation $R_A(X)$ unchanged. We now provide its definition.

Definition 3.1. Let (U, A) be a relation system. For a given subset, $X \subseteq U$ and $\emptyset \neq B \subseteq A$, *B* is called the *X*-lower approximation reduction of (U, A) if *B* satisfies the following conditions:

(1) $\underline{R}_A(X) = \underline{R}_B(X).$ (2) If $B' \subset B$, $\overline{R}_A(X) \neq R_{B'}(X).$

Since $\underline{R}_A(U) = U$, each singleton set $\{R_i\}$ $(R_i \in A)$ is a *U*-lower approximation reduction of (U, A). Thus, we assume that $X \neq U$ throughout this paper.

Let (U, A) be a relation system, where $U = \{x_1, x_2, ..., x_n\}$ and $A = \{R_1, R_2, ..., R_m\}$. For subset $X \subseteq U$, we define the discernibility matrix $M = (m_{ij})_{s \times t}$ as follows:

$$m_{ij} = \begin{cases} \{R_l | (x_i, x_j) \notin R_l\}, & \text{if } x_i \in \underline{R_A}(X) \text{ and } x_j \notin X \\ \emptyset, & \text{otherwise} \end{cases}$$

where $s = |\underline{R}_A(X)|$ and $t = |X^C|$ are the cardinalities of sets $\underline{R}_A(X)$ and $X^C = U - X$, respectively. The computational complexity of the discernibility matrix $M = (m_{ij})_{s \times t}$ is O(st).

Now we provide the X-lower approximation reduction algorithm. We use the following lemma:

Lemma 3.1. Let (U, A) be a relation system and $X \subseteq U$. If $x_i \in \underline{R}_A(X)$ and $x_i \notin X$, $m_{ii} \neq \emptyset$.

Proof. Suppose that $x_i \in \underline{R}_A(X)$, $x_j \notin X$, if $m_{ij} = \emptyset$; then, $(x_i, x_j) \in R_i$ for each $R_i \in A$. Thus, $(x_i, x_j) \in R_A$ and $x_j \in r_A(x_i)$. Since $x_i \in \underline{R}_A(X)$, $x_i \in r_A(x_i) \subseteq X$. This is contradictory with the assumption. \Box

The X-lower approximation reduction algorithm is based on the following theorem:

Theorem 3.1. Let (U, A) be a relation system, and $X \subseteq U$. Then, the following conditions are equivalent:

(1) $\underline{R}_A(X) = \underline{R}_B(X).$ (2) $\overline{lf} m_{ij} \neq \emptyset, \overline{B} \cap m_{ij} \neq \emptyset.$

Proof. (1) \Rightarrow (2): if $m_{ij} \neq \emptyset$ and $m_{ij} \cap B = \emptyset$. By the definition of m_{ij} , we assume that $x_i \in \mathbb{R}_A(X)$, $x_j \notin X$. $m_{ij} \cap B = \emptyset$ implies $x_i \mathbb{R}_B x_j$; using condition (1), $x_i \in \mathbb{R}_A(X) = \mathbb{R}_B(X)$. Thus, $x_j \in r_B(x_i) \subseteq X$. This is a contradiction.

 $(2)\Rightarrow(1)$: For each subset $X\subseteq U$, $B\subseteq A$ implies $R_A\subseteq R_B$ and $\underline{R}_B(X)\subseteq \underline{R}_A(X)$. We need to show that $\underline{R}_A(X)\subseteq \underline{R}_B(X)$. Let $x_i \in \underline{R}_A(X)$, such that $r_A(x_i)\subseteq X$. We now show that $\overline{r}_B(x_i)\subseteq X$.

If $x_j \notin X$, then, by the definition of m_{ij} and Lemma 3.1, $m_{ij} \neq \emptyset$ and, by condition (2), $B \cap m_{ij} \neq \emptyset$. That is, $(x_i, x_j) \notin R_l$ for some $R_l \in B$. This means that $x_j \notin r_B(x_i)$. This proves $r_B(x_i) \subseteq X$ and $\underline{R_A}(X) \subseteq \underline{R_B}(X)$. This completes the proof of the theorem. \Box

Corollary 3.1. Let (U, A) be a relation system with $\emptyset \neq B \subseteq A$. For a given subset $X \subseteq U$ and $\underline{R}_A(X) \neq \emptyset$, *B* is an *X*-lower approximation reduction of (U, A) if and only if *B* is a minimal subset of *A* satisfying $B \cap m_{ii} \neq \emptyset$, for any $m_{ii} \neq \emptyset$.

Proof. If *B* is an *X*-lower approximation reduction of (*U*, *A*), then by Definition 3.1(1), $R_A(X) = R_B(X)$. By using Theorem 3.1, *B* satisfies $B \cap m_{ij} \neq \emptyset$ for any $m_{ij} \neq \emptyset$. Using Definition 3.1(2), *B* is a minimal subset of *A* satisfying $B \cap m_{ij} \neq \emptyset$ for any $m_{ij} \neq \emptyset$.

Conversely, if *B* is a minimal subset of *A* satisfying $B \cap m_{ij} \neq \emptyset$ for any $m_{ij} \neq \emptyset$, by Theorem 3.1, $R_A(X) = R_B(X)$. Moreover, the minimal property of *B* implies Definition 3.1(2). \Box

According to Corollary 3.1, for any given subset $X \subseteq U$, we can give an X-lower approximation reduction algorithm for relation system (*U*, *A*) as follows:

- (1) Find the discernibility matrix $M = (m_{ij})_{s \times t}$, where $s = |R_A(X)|$ and $t = |X^C|$.
- (2) Transform the discernibility function f from its CNF $f = \bigwedge_{m_{ij} \neq \emptyset} (\lor m_{ij})$ into a DNF [38] $f = \lor_{u=1}^{\nu} (\land B_u), (B_u \subseteq A).$
- (3) $Red(A) = \{B_1, B_2, \dots, B_\nu\}$ and $Core(A) = \bigcap_{u=1}^{\nu} B_u$.

End the algorithm.

The example below illustrates our algorithm.

Example 3.1. Let $U = \{1, 2, 3, 4\}$ and $A = \{R_1, R_2, R_3, R_4\}$. Relations R_1, R_2, R_3 , and R_4 on U are respectively defined by the following relational matrices:

$$M_{R_1} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \qquad M_{R_2} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}, \qquad M_{R_3} = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}, \qquad M_{R_3} = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}.$$
 By direct computation, $M_{R_C} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$ If $X = \{2, 4\}, \ \underline{R_A}(X) = \{1, 2, 3\}.$ The

Please cite this article as: G. Liu, Z. Hua, Partial attribute reduction approaches to relation systems and their applications, Knowledge-Based Systems (2017), https://doi.org/10.1016/j.knosys.2017.10.014

Download English Version:

https://daneshyari.com/en/article/6862016

Download Persian Version:

https://daneshyari.com/article/6862016

Daneshyari.com