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a b s t r a c t 

This paper proposes a novel event-triggered subspace predictive control (SPC) method for a class of linear 

discrete-time partially unknown systems. Without the complete system parameter information, the de- 

sign parameters of the event-triggered law are first derived via system data by the reinforcement learning 

method. The proposed event-triggered law depends on the defined input error and the state-dependent 

threshold. The receding horizon principle in the typical predictive control methods is substituted by the 

event-triggered law, which can ensure the stability of the predictive input with optimality. The proposed 

method can considerably reduce the data computation and transmission load of the conventional SPC 

methods. The simulation results illustrate the effect and the satisfactory performance of the proposed 

method. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The subspace predictive control (SPC) approaches developed by 

Favoreel and Woodley [1,2] circumvent the modeling step and di- 

rectly seeks the predictors of future outputs from data as a new 

predictive control method. The SPC method designs a predictive 

controller directly from the measured input and output (I/O) data 

without the system model. The key step of SPC is to identify a fu- 

ture output predictor by subspace identification, which maps the 

past I/O data and the future inputs to predict the future outputs of 

a system. Then a predictive controller is parameterized and devel- 

oped by the identified predictor. The SPC method skips the iden- 

tification of the system model and only relies on its system oper- 

ation data, which can therefore be easily implemented online to 

accommodate various control systems. 

However, similar to the model predictive control (MPC) meth- 

ods [4–9] , the SPC method also generates an optimal predicted in- 

put vector and applies only the first component at every time in- 

stant to the system, which is known as the ‘receding horizon opti- 

mization’. Thus, an optimization problem is solved recursively on- 

line at every time instant to guarantee its stability and optimality, 

which costs considerable computation load in this process. In order 

to reduce the computation load, this paper introduces the event- 
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triggered idea into the SPC method. Conventional event-triggered 

methods were originally applied in the network-based control to 

reduce the communication load due to the limited network re- 

sources [10–13] . In recent years, some results have been published 

with introducing the event-triggered idea into the predictive con- 

trol methods to improve the algorithm efficiency [14–18] . In [16] , 

an event-triggered MPC scheme for constrained continuous-time 

nonlinear systems with bounded disturbances is developed, which 

can reduce the communication load with the proposed algorithm. 

While in [17] , the stability and feasibility of the above proposed al- 

gorithm can be ensured by properly designing the prediction hori- 

zon. In [18] , an event-triggered law is proposed for the closed-loop 

SPC method with system input and output data. The correspond- 

ing event-triggered law is designed based on the pre-designed ob- 

server parameters. Therefore, all the above event-triggered meth- 

ods are designed based on either the complete system model or 

the equivalent identified model, which are model-based methods 

instead of data-driven ones. 

Motivated by the above results, this paper develops a novel 

event-triggered SPC method for partially unknown discrete-time 

linear time-invariant (LTI) systems with actuator constraints. With 

the input-to-state (ISS) stability theory, the defined input error is 

checked to decide whether the input component is applied to the 

system or not. Without the complete system model information, 

the admissible state feedback law with its kernel matrix is derived 

by the technique of reinforcement learning method via system 

data. Then the proposed event-triggered law is designed based on 
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them. With partial system model parameters and the system on- 

line data, the event-triggered SPC method can control the system 

with the expected performance and reduced computation load. 

The rest of this paper is organized as follows: Section 2 in- 

troduces the conventional SPC method for the system with actu- 

ator constraints; Section 3 elaborates the main parts of the event- 

triggered SPC algorithm, including obtaining the stable feedback 

control parameters by the reinforcement learning method and de- 

signing the proposed event-triggered law; Section 4 illustrates the 

simulation results of the proposed method and verifies its satisfac- 

tory effect; Section 5 draws the conclusion and ends this paper. 

2. Problem statement and preliminaries 

Consider a discrete-time LTI system of the form: 

x k +1 = Ax k + Bu k , (1) 

where x k ∈ R 

n denotes the system state and u k ∈ R 

m denotes the 

system input. 

It is assumed that the following assumptions are satisfied for 

the system. 

Assumptions: 

1. The system matrix A is unknown while the input matrix B is 

known; 

2. The system actuators are limited by the constraints such that 

u min ≤ u k ≤ u max ; 

3. The system dynamic ( A, B ) is controllable; 

4. The data of the state and input can be both obtained online 

during the system operation. 

Remark 1. Assumptions 1 is the description of the partially un- 

known system. Sometimes, due to the complicated interaction in- 

side the system plant, the accurate parameters of the state ma- 

trix A is hard to obtain with the modelling uncertainty. However, 

the input matrix B can be derived based on the actuator physical 

structures [36] . Meanwhile, such assumption is typical in the re- 

inforcement learning algorithms for discrete-time systems [19–21] . 

Assumption 2 indicates the actuator constraints due to the actua- 

tor physical conditions. Assumptions 3–4 are typical assumptions 

in state feedback control problems and without further explana- 

tion. 

To obtain the data-based equations of system (1), the following 

notations are defined by a certain data vector ω k ∈ R 

ζ
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[
ω 

T 
k 

ω 
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ζ r×s , (3) 

where s, r are some integers ( s � r ). 

The notation �
k 2 
k 1 

represents the data Hankel matrix, with k 1 

representing the instant of the first block element on the upper 

left corner of the matrix and with k 2 denoting the instant of the 

last block element on the lower right corner of the matrix. 

The typical SPC method is based on the following input-output 

equations of system (1): 

X 

−N 
− j 

= �X p + HU 

−N 
− j 

(4) 

X 

0 
− j+ N = �X f + HU 

0 
− j+ N, 

(5) 

where the subscript p denotes the past time interval and f denotes 

the forward time interval. Since the measurements of the inputs 

u k and the states x k are available for k ∈ {− j, . . . , 0 } , the following 

data block Hankel matrices are constructed based on (2)–(3): 

U 

−N 
− j 

= [ u N (− j) , u N (− j + 1) , . . . , u N (−2 N + 1) ] 

U 

0 
− j+ N = [ u N (− j + N) , u N (− j + N + 1) , . . . , u N (−N + 1) ] 

X 

−N 
− j 

= [ x N (− j) , x N (− j + 1) , . . . , x N (−2 N + 1) ] 

X 

0 
− j+ N = [ x N (− j + N) , x N (− j + N + 1) , . . . , x N (−N + 1) ] 

(6) 

The past and future state sequences in (4)–(5) are defined as: 

X p = 

[
x − j x − j+1 · · · x −2 N+1 

]
(7) 

X f = 

[
x − j+ N x − j+ N+1 . . . x −N+1 

]
(8) 

and the extended observable matrix � and the corresponding 

Toeplitz matrix H are given: 
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where I denotes the identity matrix of appropriate dimensions. 

Remark 2. The previous system data are collected as in (6). The 

persistency of excitation condition of the constructed data matri- 

ces should be satisfied to ensure the consistency of identification. 

Thus, the data are collect under adequately different system opera- 

tion conditions and the column number in the above data matrices 

is much larger (typically 100 times) than the row number. Detailed 

explanations can be referred to [1–3] . 

Then in this paper, the SPC problem with actuator constraints 

is summarized: given a future reference state trajectory r k for k ∈ 

{ 1 , 2 , . . . , N f } and measurements of the inputs u k and the states x k 

of the system (1) for k ∈ {− j, . . . , 0 } , find the input sequence u N f � 

u N f (1) = [ u T 
1 
, . . . , u T 

N f 
] T with u min ≤ u i ≤ u max , i ∈ { 1 , 2 , . . . , N f } , 

such that the following quadratic cost function J is minimized: 

J = 

N f ∑ 

k =1 

( ̂  x k − r k ) 
T Q( ̂  x k − r k ) + u 

T 
k Ru k , (11) 

where ˆ x k is the k-step-ahead predicted state, Q ∈ R 

n ×n and R ∈ 

R 

m ×m are user-defined symmetric positive-definite weighing ma- 

trices. N f denotes the future optimization horizon and is defined 

by the user. Then the SPC problem with actuator constraints can 

be solved by Algorithm 1 as follows. 

Algorithm 1 (The conventional SPC algorithm with actuator con- 

straints). 

Step 1. From the data set { u − j , . . . , u 0 , x − j , . . . , x 0 } , construct the 

data block Hankel matrices X df � X 0 − j+ N , U f � U 

0 
− j+ N and W p as 

(4)–(8), where W p � [ U 

−N 
− j 

X −N 
− j 

] T . 

Step 2. Make the QR-decomposition [ 
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