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a b s t r a c t 

Recently, learning equivariant representations has attracted considerable research attention. Dieleman 

et al. introduce four operations which can be inserted into convolutional neural network to learn deep 

representations equivariant to rotation. However, feature maps should be copied and rotated four times 

in each layer in their approach, which causes much running time and memory overhead. In order to 

address this problem, we propose Deep Rotation Equivariant Network consisting of cycle layers, isotonic 

layers and decycle layers. Our proposed layers apply rotation transformation on filters rather than fea- 

ture maps, achieving a speed up of more than 2 times with even less memory overhead. We evaluate 

DRENs on Rotated MNIST and CIFAR-10 datasets and demonstrate that it can improve the performance of 

state-of-the-art architectures. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Convolutional neural networks (CNNs) recently have made great 

success in computer vision tasks [1–5] . One of the reasons to its 

success is that weight sharing of convolution layers ensures the 

learnt representations are translation equivariant [6] , i.e., shifting 

an image and then feeding it through the network is the same as 

feeding the original image and then shifting the resulting repre- 

sentations. 

However, CNNs fail to exploit rotation equivariance to tackle vi- 

sion problems on datasets with rotation symmetry in nature, es- 

pecially microscopic images or aerial images, which can be pho- 

tographed from any angle. Thus, current studies focus on dealing 

with this issue. 

One widely used method to achieve rotation equivariance is to 

constrain the filters of the first convolutional layer to be rotated 

copies of each other, and then apply cross-channel pooling imme- 

diately after the first layer [7–9] . However, only shallow represen- 

tations equivariant to rotation can be learnt by applying one con- 

volutional layer. In addition, such representations are nearly trivial, 

since pooling rotated copies is approximately equivalent to con- 

volving non-rotated inputs with highly symmetric filters. 

To solve this problem, Dieleman et al. [10] introduce four oper- 

ations which can be combined to make these models able to learn 

deep representations equivariant to rotation. However, every fea- 
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ture map should be copied and rotated by these operations four 

times, which causes high memory and running time overhead. 

In this paper, we give a comprehensive theoretical study on ap- 

proaches to rotation equivariance with CNNs. We propose a novel 

CNN framework, Deep Rotation Equivariant Network (DREN) to ob- 

tain deep equivariance representations. We prove that DREN can 

achieve the identical output to that of [10] with much less running 

time and memory requirements. 

We evaluate our framework on two datasets, Rotated MNIST 

and CIFAR-10. On Rotated MNIST, it can outperform the existing 

methods with less number of parameters. On CIFAR-10, it can im- 

prove the results of state-of-the-art models with the same number 

of parameters. Moreover, our implementation achieves a speed up 

of more than 2 times as that of [10] , with even less memory over- 

head. 

2. Related works 

Learning invariant representations by neural networks has been 

studied for over a decade. Early works focus on refinement of re- 

stricted Boltzmann machines (RBMs) and deep belief nets (DBNs). 

Kavukcuoglu et al. [11] give an approach to automatically gener- 

ate topographic maps of similar filters in an unsupervised manner 

and these filters can produce local invariance when being pooled 

together. Norouzi et al. [12] develop convolutional RBM (c-RBM), 

using weight sharing to achieve shift-invariance. Later, a follow- 

ing work by Schmidt and Roth [13] incorporates linear transforma- 

tion invariance into c-RBMs, yielding features that have a notion 

of transformation performed. The model proposed by Lee et al. 
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[14] uses a probabilistic max-pooling layer to support efficient 

probabilistic inference, which also shows the property of transla- 

tion invariance. 

Recently, convolutional neural networks have become the most 

popular models in various computer vision tasks [15–18] . One of 

the advantages of CNNs is its translation equivariant property pro- 

vided by weight sharing [6] . However, it cannot deal with rotation 

transformation of input images. Thus, many variants of CNNs have 

been proposed to settle these problems. Basically, the idea of most 

of the related works [9,19,20] is to stack rotated copies of images 

or features to obtain rotation equivariance. 

There are also other methods. Gens and Domingos [21] propose 

deep symmetry networks that can form feature maps over arbi- 

trary transformation groups approximately. Methods proposed by 

Wu et al. [7,8] show that rotation convolution layers followed by a 

cross-channel pooling over rotations could achieve rotation equiv- 

ariance. In fact, none of the directional features could be extracted 

by these methods, since pooling is applied right after one rotation 

convolution. Cohen and Welling [6] propose a group action equiv- 

ariant framework by stacking group acted convolution and provide 

a theoretically grounded formalism to exploit symmetries of CNNs. 

Worrall et al. [22] present harmonic networks, a CNN structure ex- 

hibits equivariance to patch-wise translation and 360-rotation. Re- 

cently, the vector field network proposed by Marcos et al. [23] ap- 

ply interpolation to deal with rotation of general degrees. 

Dieleman et al. [10] introduce four operations to encode rotation 

symmetry into feature maps to build a rotation equivariant neural 

network. However, feature maps should be rotated each time to 

ensure equivariance, which obviously costs much time and mem- 

ory. Our approach presents a different way to overcome this issue 

by rotating filters, which brings about exactly the same results, but 

in a more efficient way. 

3. Equivariance and invariance 

In this section, we briefly discuss the notions of equivariance 

and invariance of image representations. Formally, a representa- 

tion of a CNN can be regarded as a function f mapping from image 

spaces to feature spaces. 

We say, a representation f is equivariant to a family T of trans- 

formations on image spaces, if for any transformation T ∈ T , there 

exists a corresponding transformation T ′ on feature spaces, such 

that 

f (T x ) = T ′ f (x ) , (1) 

for any input images x . Intuitively, this means that the learnt rep- 

resentation f of CNNs changes in an expected way, when the input 

image is transformed. 

There is another stronger case when T ′ is the identity map, i.e., 

the map fixing the inputs, for all T ∈ T . This indicates that the rep- 

resentations remain unchanged no matter how the input data is 

transformed by transformations in T , i.e., the representation is in- 

variant. Invariance is an ideal property of representation, because a 

good object classifier must output an invariant class label no mat- 

ter what location of the object lies in. 

The goal of this paper is to present a novel convolutional neural 

network framework, which learns representations that are equiv- 

ariant to rotation transformations R , s. t. R 

′ = R , that is 

f (R x ) = R f (x ) , (2) 

for any input image x . Fig. 1 gives an example of rotation equiv- 

alent representations learnt by DREN, comparing to a traditional 

CNN. The reason that we do not directly work on rotation invari- 

ant representations is that this kind of rotation equivariance can be 

easily lifted to rotation invariance, for instance, by a global pooling 

Fig. 1. Latent representations learnt by a CNN and a DREN (Proposed), where R 

stands for clockwise rotation. The left part is the result of a typical CNN while the 

right one is that of a DREN. In both parts, the outer cycles consist of the rotated 

images while the inner cycles consist of the learnt representations. Features pro- 

duced by a DREN is equivariant to rotation while that produced by a typical CNN is 

not. 

operation [24] , i.e., the kernel size of this pooling layer is equal to 

the size of feature maps. 

Since these are the only four kinds of possible rotation of 

an image that can be performed without interpolations, we 

mainly deal with the rotation transformation family R = {R θ | θ = 

kπ/ 2 , k ∈ Z } . However, our experimental results show that our 

framework can achieve good performance when dealing with ro- 

tation for general degrees. 

4. Rotation equivariant convolution 

In this section, we define three novel types of convolutional lay- 

ers, which are combined to learn rotation equivariant features. 

4.1. Preliminaries 

For the sake of simplicity, we omit bias terms, activation func- 

tions and other structures, concentrating on convolution. In addi- 

tion, we set the stride of any convolution layer be 1. The general 

case will be discussed in Section 4.5 . 

First, we vectorize convolution operation formally to simplify 

our derivation. Shortly, we shall use matrix multiplication to de- 

scribe multi-channel convolution. Let us assume that the input of 

a convolutional layer contains n feature maps(images) { x j } n j=1 
. This 

layer has mn filters, denoted by W ij with 1 ≤ i ≤ m , 1 ≤ j ≤ n . These 

can be organized as a matrix(vector) x of size n and a matrix W 

of size m, n in which entries are filters or feature maps. We refer 

to such a matrix (vector) a hyper-matrix (hyper-vector). Then, the 

convolution W 

∗x is defined to be a hyper-vector of size m whose 

i th entry is 
∑ 

1 ≤ j≤n 

W i j ∗ x j , (3) 

for each 1 ≤ i ≤ m . One can verify that this is actually equivalent to 

ordinary multi-channel convolution. 

Next, we introduce the rotation operator R , rotating a filter or 

a feature map by a degree of π /2 counterclockwise. We also define 

the action of R on a hyper-matrix W . R (W ) is defined to be en- 

trywise rotation. There are three obvious facts about the rotation 

operator that are frequently used in the sequel. 

1. Convolutionally distributive law: R (W ∗ x ) = R (W ) ∗ R (x ) . 

This indicates that rotating filters and feature maps simul- 

taneously before convolution yield rotated outputs. 

2. Additively distributive law: R (X 1 + X 2 ) = R (X 1 ) + R (X 2 ) . 

Note that + is entrywise addition of matrices. 

3. Cyclic law: R 

4 is equal to the identity transformation. 
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