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a b s t r a c t 

Recently, the problem of extracting tensor object feature is studied and a very elegant solution, multi- 

linear principal component analysis (MPCA), is proposed, which is motivated as a tool for tensor object 

dimension reduction and feature extraction by operating directly on the original tensor data. However, 

the original MPCA is an offline learning method and not suitable for processing online data since it gen- 

erates the best projection matrices by learning on the whole training data set at once. In this study, 

we propose an online multilinear principal component analysis (OMPCA) algorithm and prove that the 

sequence generated by OMPCA converges to a stationary point of the total tensor scatter maximizing 

problem. Experiment results of an OMPCA-based support higher-order tensor machine for classification, 

show that OMPCA significantly lowers the time of dimension reduction with little sacrifice of recognition 

accuracy. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

With the rapid development in modern computer technology, 

tensor (the higher order generalization of vectors and matrices) 

data is becoming prevalent in many areas such as economet- 

rics, chemometrics, psychometrics, computer vision, medical im- 

age analysis, web data mining and signal processing. For example, 

color images are three-dimensional (3D) objects with column, row 

and color modes [1] . MRI images [2] , gray-level video sequences 

[3–6] , gait silhouette sequences [7] and hyperspectral cube [8] are 

3D data, color video sequences [9,10] are four-dimensional (4D) 

data. Generally speaking, a tensor is usually a multi-mode array 

and each mode corresponds to a feature space of tensor data. The 

tensor representation of data reflects the relationships between 

different features. If the multi-view is the multiple feature repre- 

sentation of the heterogeneous data in multi-view learning, each of 

the heterogeneous data examples is associated with multiple high- 

dimensional features [11] . Under this assumption, tensor can also 

be treated as the multi-view data. 

Note that reshaping tensor objects into vectors breaks the nat- 

ural structure and correlation in the original tensor data. More and 

more researchers focus on operating directly on the original ten- 

sor data. Within the last decade, researchers have suggested con- 

structing multilinear models to extend the vector framework to 

tensor patterns [12–17] . In [13] , Hao et al. presented a novel lin- 
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ear support higher-order tensor machine, combined with the ten- 

sor rank-one decomposition. AL-Shiha et al. [14] proposed a new 

supervised and unsupervised multilinear neighborhood preserving 

projection method for discriminative feature extraction by extend- 

ing the original neighborhood preserving projection to its multilin- 

ear form. These tensor-based multilinear data analysis has shown 

that tensor models are capable of taking full advantage of the mul- 

tilinear structures to provide better understanding and more pre- 

cision. However, the tensor data contains large quantities of infor- 

mation redundancy and thus not all the features are important for 

classification and feature extraction [15–17] . Often, a dimension re- 

duction scheme is needed to train a tensor model from a data set. 

Dimension reduction is an attempt to transform a high- 

dimensional data set into a low-dimensional representation while 

retaining most of the underlying structure in the data [18] . 

Common algorithms of tensor dimension reduction include two- 

dimensional principal component analysis (2DPCA) [19] , parallel 

factor model (Parafac) [20,21] , Tucker decomposition [20,22] , 

tensor canonical correlation analysis [11] , multilinear principal 

component analysis (MPCA) [15] and so on [23–34] . In these 

algorithms, MPCA is the most popular one, which follows the 

classical PCA paradigm and determines a multilinear projection 

onto a tensor subspace of lower dimension. However, the original 

MPCA is not suitable to deal with online problems since whenever 

new additional samples are presented, MPCA system will have to 

repeat the learning process from the beginning. With the rapid 

increment of training data, its computational complexity will 

significantly increase. Motivated by this observation, in this study, 

we will propose an online multilinear principal component anal- 
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ysis (OMPCA) algorithm, which takes full use of the old training 

samples and sharply reduces the time of dimension reduction. 

The rest of this paper is organized as follows. In Section 2 , 

some notations of tensor and MPCA are introduced. The online 

multilinear principal component analysis algorithm is proposed in 

Section 3 . Experiments can be found in Section 4 . In Section 5 con- 

clusions are given. 

2. Preliminaries 

In this section, we first introduce some notations and basic def- 

initions used throughout the paper, and then briefly review the 

MPCA algorithm. 

2.1. Notation and basic definitions 

Except in some specified cases, lower-case bold letter, e.g., x , 

represents a column vector, upper-case bold one, e.g., X , represents 

a matrix, and calligraphic letter, e.g., X , represents a tensor. Their 

elements are denoted by indices, which typically range from 1 to 

the capital letter of the index, e.g., n = 1 , ..., N. In the following, we 

introduce some notations and definitions of the tensors in the area 

of multilinear algebra [20,35] . 

Definition 1 (Tensor) . A tensor, also known as N th-order tensor, 

multidimensionality array, N -way or N -mode array, is a higher- 

order generalization of a vector (first-order tensor) and a matrix 

(second-order tensor), and denoted as X ∈ R I 1 ×I 2 ×···×I N where N is 

the order of X , also called way or mode. The element of X is de- 

noted by x i 1 , i 2 , ··· , i N , i n ∈ {1, 2, ���, I n }, 1 ≤ n ≤ N . 

Definition 2 (Kronecker product) . If X is a m × n matrix and 

Y is a p × q matrix, then the Kronecker product X �Y is 

the mp × nq block matrix: 

X � Y = 

⎡ ⎣ 

x 11 Y · · · x 1 n Y 

. . . 
. . . 

. . . 
x m 1 Y · · · x mn Y 

⎤ ⎦ . (1) 

Definition 3 (Inner product) . The inner product of two same-sized 

tensors X , Y ∈ R I 1 ×I 2 ×···×I N is defined as the sum of the products of 

their entries, i.e., 

〈 X , Y 〉 = 

I 1 ∑ 

i 1 =1 

I 2 ∑ 

i 2 =1 

· · ·
I N ∑ 

i N =1 

x i 1 , i 2 , ···, i N y i 1 , i 2 , ···, i N . (2) 

Definition 4 (n-mode product) . The n -mode product of a tensor 

X ∈ R I 1 ×I 2 ×···×I N and a matrix U ∈ R J n ×I n , denoted by X × n U , is a 

tensor in R I 1 ×I 2 ×···×I n −1 ×J n ×I n +1 ×···×I N given by 

( X ×n U ) i 1 , i 2 , ···, i n −1 , j n , i n +1 , ···, i N = 

I n ∑ 

i n =1 

x i 1 , i 2 , ···, i N u j n , i n . (3) 

Remark: Given a tensor X ∈ R I 1 ×I 2 ×···×I N and two matri- 

ces U ∈ R J n ×I n , V ∈ R J m ×I m , one has ( X ×n U ) ×m 

V = ( X ×m 

V ) ×n U = 

X ×n U ×m 

V . 

Definition 5 (Frobenius norm) . The Frobenius norm of a tensor 

X ∈ R I 1 ×I 2 ×···×I N is the square root of the sum of the squares of all 

its elements, i.e., 

‖ 

X ‖ F = 

√ 

〈X , X 〉 = 

√ √ √ √ 

I 1 ∑ 

i 1 =1 

I 2 ∑ 

i 2 =1 

· · ·
I N ∑ 

i N =1 

X 

2 
i 1 , i 2 , ··· , i N 

. (4) 

Definition 6 (Tensor rank-one decomposition) . If a tensor X ∈ 

R I 1 ×I 2 ×···×I N can be written as 

X = 

R ∑ 

r=1 

x 

(1) 
r ◦ x 

(2) 
r ◦ · · · ◦ x 

(N) 
r = 

R ∑ 

r=1 

N ∏ 

n =1 

◦x 

(n ) 
r , (5) 

we call ( 5 ) tensor rank-one decomposition with length R , also 

known as CP decomposition. 

Definition 7 (Total tensor scatter) . Let {X 1 , X 2 , . . . , X M 

} be a set of 

M tensor samples in R I 1 ×I 2 ×···×I N . The total scatter of these tensors 

is defined as: 

�X = 

M ∑ 

m =1 

∥∥X m 

− X̄ 

∥∥2 

F 
, (6) 

where X̄ is the mean tensor defined as X̄ = 

1 
M 

∑ M 

i =1 x i . 

Definition 8 (Mode-n matricization of a tensor) . The mode- n 

matricization of a tensor X ∈ R I 1 ×I 2 ×···×I N is denoted by X (n ) ∈ 

R 
I n ×

∏ N 
i =1 ,i 	 = n I i . 

2.2. MPCA 

Given a set of M tensor objects {X 1 , X 2 , . . . , X M 

} with X m 

∈ 

R I 1 ×I 2 ×···×I N , m = 1 , ..., M for training. Denote the column orthonor- 

mal matrix U 

(n ) ∈ R I n ×P n , n = 1 , 2 , . . . , N where I n ≥ P n . For m = 

1 , ..., M, let Y m 

= X m 

×1 U 

(1) T ×2 U 

(2) T · · · ×N U 

(N) T be the projection of 

X m 

onto the tensor subspace R P 1 ×P 2 ×···×P N . MPCA aims to determine 

the N projection matrices { U 

(n ) ∈ R I n ×P n , I n ≥ P n , n = 1 , 2 , . . . , N } b y 

solving the total tensor scatter maximizing problem [15] : 

max 
U (1) , U (2) , ··· , U (N) 

�
(
U 

(1) , U 

(2) , ..., U 

(N) 
)

s.t. U 

(n ) T U 

(n ) = I (n ) , n = 1 , 2 , . . . , N (7) 

where �
(
U 

(1) , U 

(2) , . . . , U 

(N) 
)

= 

∑ M 

m =1 ‖ ( X m 

− X̄ ) ×1 U 

(1) T ×2 U 

(2) T · · ·
×N U 

(N) T ‖ 2 F and I (n ) ∈ R P n ×P n is a unit matrix. 

Note that it is difficult to find the global optimal solution 

of the problem since it is nonconvex. In [15] , the problem ( 7 ) 

is solved cyclically over each U 

(1) , . . . , U 

(N) while fixing the re- 

maining blocks at their last updated values. In details, given 

the current iteration 

(
U 

(1) 
k 

, . . . , U 

(N) 
k 

)
, generate the next iteration 

(U 

(1) 
k +1 

, . . . , U 

(N) 
k +1 

) according to the iteration 

U 

( n ) 
k +1 

∈ argmax 
U ( n ) 

T 
U ( n ) =I ( n ) 

�
(
U 

( 1 ) 
k +1 

, . . . , U 

( n −1 ) 
k +1 

, U 

( n ) , U 

( n +1 ) 
k 

, . . . , U 

( N ) 
k 

)
, 

n = 1 , . . . , N. 

(8) 

To get the optimal solution of ( 8 ), we rewrite the function 

�(U 

(1) 
k +1 

, . . . , U 

(n −1) 
k +1 

, U 

(n ) , U 

(n +1) 
k 

, . . . , U 

(N) 
k 

) as an inner product 

〈 U 

(n ) , �
(n ) 

M,k 
U 

(n ) 〉 , where �
(n ) 

M,k 
:= 

∑ M 

m =1 ( X m (n ) − X (n ) ) ̂
 U 

(n ) 
k 

̂ U 

(n ) T 
k 

( X m (n ) − X (n ) ) 
T is a symmetric matrix with 

̂ U 

(n ) 
k 

:= U 

(n +1) 
k 

� · · · �

U 

(N) 
k 

� U 

(1) 
k +1 

� · · · � U 

(n −1) 
k +1 

. Furtherly, it is natural to get the opti- 

mal solution of ( 8 ) which consists of the P n eigenvectors of the 

matrix �
(n ) 

M,k 
corresponding to the largest P n eigenvalues. Then, 

MPCA can be shown as follows. 

MPCA 

Initial: centralize the given dataset { x 1 , x 2 , . . . , x M } and obtain an initial point 

(U 

(1) 
0 

, . . . , U 

(N) 
0 

) . 

For k = 0 , 1 , 2 , . . . 

For n = 1 , 2 , . . . , N

U 

(n ) 
k +1 

∈ argmax 
U (n ) T U (n ) = I (n ) 

〈 U 

(n ) , �
(n ) 

M,k 
U 

(n ) 〉 (9) 

End for 

If �(U 

(1) 
k +1 

, . . . , U 

(N) 
k +1 

) − �(U 

(1) 
k 

, . . . , U 

(N) 
k 

) < η, break and output the feature tensors 

{ Y m = X m ×1 U 

(1) 
T 

k +1 
×2 U 

(2) 
T 

k +1 
· · · ×N U 

(N) 
T 

k +1 
, m = 1 , . . . , M } . 

End for 
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