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a b s t r a c t 

This paper mainly investigates two kinds of sliding mode synchronization (SMS) for multiple chaotic sys- 

tems with unknown parameters and disturbances. Both multiple coupled systems and uncoupled systems 

are considered. For multiple uncoupled chaotic systems (MUCSs), the sliding mode control scheme is de- 

signed to ensure that multiple response systems synchronize with one drive system under the effects of 

external disturbances, and the appropriate adaptive laws are proposed to estimate unknown parameters. 

For multiple coupled chaotic systems (MCCSs), the definition of transmission synchronization is given 

first. Furthermore, a special integral sliding surfaces is selected, and the corresponding controllers with 

the compensation terms are developed to realize SMS between every drive chaotic system and every 

respond system in transmission mode. Finally, some numerical examples are presented to illustrate the 

validity of theoretical results. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In the past few years, synchronization [1] of multiple chaotic 

systems has attracted increasing attention, and many innovation 

results have been developed, which have brought about some 

theoretical values for multilateral communications, secret signal- 

ing and complex networks [2–4] . Many various synchronization 

problems have been discussed for multiple coupled or uncoupled 

chaotic systems. including compete synchronization [5,6] , anti- 

synchronization [6] , hybrid synchronization [7] , general projective 

synchronization [8] , combination synchronization [9] , etc. However, 

more response systems only synchronize one drive system in al- 

most all the aforementioned results. Recently, transmission syn- 

chronization (TS) has been widely concerned to achieve multi- 

ple chaotic systems with different initial conditions step by step 

[10–13] . Its core idea is based on the benefits of cluster synchro- 

nization scheme of complex drive-response networks [14] , and can 

ensure that every system is not only the drive system, but the re- 

sponse system. This transmission structure has more valuable than 

the pervious mode, may be possible to attain vastly better perfor- 
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mance for the security of secret signals in multilateral communi- 

cations. 

It is well known that unknown model uncertainties exist in 

most practical chaotic signal transmission process. How to tackle 

with uncertainties and achieve chaos synchronization have been 

continuously discussed by lots of scholars [12,13,15–19] . To men- 

tion a few, Chen et al. designed two adaptive control schemes to 

investigate two kinds of synchronization problems for multiple un- 

certain chaotic systems [12,13] . Sun et al. dealt with finite time 

combination synchronization among three or four real and com- 

plex chaotic systems and estimated unknown parameters [18,19] . 

However, all above mentioned works have focused on multiple un- 

coupled chaotic systems. From a practical point of view, it is more 

important to investigate chaos synchronization among multiple un- 

certain coupled chaotic systems. Meanwhile, there are no related 

results on synchronization for multiple uncoupled chaotic systems 

with unknown parameters and disturbances. 

On the other hand, sliding mode control method [20–22] , as a 

more popular technique, has been successfully used to deal with 

the uncertainties in some important research areas due to its ad- 

vantages of fast dynamic response and low sensitivity to exter- 

nal disturbances and model uncertainties. For chaos synchroniza- 

tion, much more fundamental results have been reported. As a 

http://dx.doi.org/10.1016/j.neucom.2017.07.063 
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few examples, Aghababa et al. designed sliding mode controllers 

to reach synchronization between Lorenz system and Chen system 

by considering unknown uncertainties and disturbances [16,17,23] . 

Pourmahmood et al. proposed a robust adaptive sliding mode con- 

troller to achieve synchronization between two different uncertain 

chaotic systems [24] . Li et al. investigated the design of chattering- 

free sliding mode controller for chaos synchronization [25] . In [26] , 

sliding mode synchronization for fractional-order chaotic systems 

were discussed. Liu et al. used adaptive sliding mode control to in- 

vestigate finite time stabilization problem of uncertain chaotic sys- 

tems with input nonlinearity [27] . Cai et al. gave a deep discussion 

on modified projective synchronization for two uncertain chaotic 

systems [28] . From the above mentioned results, seldom authors 

considered synchronization among multiple uncertain chaotic sys- 

tems. In [13] , the authors only discussed sliding mode synchro- 

nization of multiple uncoupled chaotic systems with uncertainties 

and disturbances, and more general cases were not established on 

multiple coupled chaotic systems with unknown parameters and 

disturbances. In addition, adaptive integral sliding mode control 

method has been applied to synchronize coupled nonlinear sys- 

tems in [29–31] . Therefore, the above analysis motivate us to carry 

out such questions. 

In response to the above discussions, the purpose of this paper 

is to investigate SMS of multiple uncertain chaotic systems with 

unknown parameters and disturbances. Both MUCSs and MCCSs 

are considered. The main contributions of this paper are listed: 

(1) On the basis of [13] , sliding mode synchronization for MUCSs 

is continued to investigate by considering the effects of unknown 

parameters and disturbances from a theoretical point of view. (2) 

TS among multiple uncertain chaotic systems with the coupling 

terms is investigated for the first time. (3) For MCCSs, a special 

class of sliding mode controllers with the compensation terms and 

adaptive laws are developed to avoid the influence of the coupling 

terms and deal with effectively unknown parameters and distur- 

bances. 

The rest of this paper is organized as follows. Section 2 dis- 

cusses SMS of MUCSs with unknown parameters and disturbances. 

In Section 3 sliding mode control scheme is designed to realize 

TS for multiple uncertain coupled chaotic systems. Some numeri- 

cal examples and analysis are illustrated in Section 4 Finally, some 

conclusions and the future works are shown in Section 5 

2. SMS of MUCSs with unknown parameters and disturbances 

In this section, N uncoupled chaotic systems with unknown pa- 
rameters and disturbances can be considered, where the first sys- 
tem is ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x 11 (t) = f 11 ( x 11 (t ) , . . . , x 1 n (t ) ) + F 11 ( x 11 (t ) , . . . , x 1 n (t ) ) θ1 + d 11 (t) , 
˙ x 12 (t) = f 12 ( x 11 (t ) , . . . , x 1 n (t ) ) + F 12 ( x 11 (t ) , . . . , x 1 n (t ) ) θ1 + d 12 (t) , 

. 

. 

. 
˙ x 1 n (t) = f 1 n ( x 11 (t ) , . . . , x 1 n (t ) ) + F 1 n ( x 11 (t ) , . . . , x 1 n (t ) ) θ1 + d 1 n (t) , 

(2.1) 

where x 1 l (l = 1 , . . . , n ) is the state of the drive system (2.1) and 

x 1 (t) = [ x 11 , x 12 , . . . , x 1 n ] 
T ; f 1 l ( x 1 ) is the continuous function and 

f 1 ( x 1 (t)) = [ f 11 , f 12 , . . . , f 1 n ] 
T 

; F 1 l ( x 1 ( t )) is the matrix function and 

F 1 ( x 1 (t)) = [ F 11 , F 12 , . . . , F 1 n ] 
T ; θ1 = [ θ11 , θ12 , . . . , θ1 n ] 

T 
is the vector 

of unknown parameters, and D 1 (t) = [ d 11 , d 12 , . . . , d 1 n ] 
T 

is the vec- 
tor of all external disturbances. The other N − 1 systems can be 
expresses as the following general form, 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x j1 (t) = f j1 ( x j1 (t ) , . . . , x jn (t ) ) + F j1 ( x j1 (t ) , . . . , x jn (t ) ) θ j + d j1 (t) + u j−1 , 1 , 

˙ x j2 (t) = f j2 ( x j1 (t ) , . . . , x jn (t ) ) + F j2 ( x j1 (t ) , . . . , x jn (t ) ) θ j + d j2 (t) + u j−1 , 2 , 

. 

. 

. 

˙ x jn (t) = f jn ( x j1 (t ) , . . . , x jn (t ) ) + F jn ( x j1 (t ) , . . . , x jn (t ) ) θ j + d jn (t) + u j−1 ,n , 

(2.2) 

where j = 2 , . . . , N. x j (t) = 

[
x j1 , x j2 , . . . , x jn 

]T 
is the state vec- 

tor of the j th system; f j ( x j (t)) = 

[
f j1 , f j2 , . . . , f jn 

]T 
is the con- 

tinuous function vector; F j ( x j (t)) = 

[
F j1 , F j2 , . . . , F jn 

]T 
is the ma- 

trix function vector; the vector of the unknown parameters is 

θ j = 

[
θ j1 , θ j2 , . . . , θ jn 

]T 
and the external disturbance is D j (t) = [

d j1 , d j2 , . . . , d jn 
]T 

; u j−1 = 

[
u j−1 , 1 , u j−1 , 2 , . . . , u j−1 ,n 

]T 
is the vector 

of control inputs. 
Consider α as the desired scaling factor, and it is assumed that 

the external disturbances are norm-bound in C 1 , i.e. | d 1 i ( t )| ≤β1 i 
(i = 1 , . . . , n ) and | d ji ( t )| ≤β ji , where β1 i and β ji are constants. Now 

we choose the first chaotic system as the drive system and the 
other N − 1 systems as the response systems, then the state of syn- 
chronization error can be expressed as e j−1 ,i (t) = x ji (t) − αx 1 i (t) , 

where j = 2 , . . . , N and i = 1 , . . . , n, and the corresponding error 
system ˙ e j−1 can be easily obtained as 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

˙ e j−11 = f j1 ( x j ) − α f 11 ( x 1 ) + F j1 ( x j ) θ j1 − αF 11 ( x 1 ) θ11 + d j1 (t) − αd 11 (t) + u j−1 , 1 

˙ e j−1 , 2 = f j2 ( x j ) − α f 12 ( x 1 ) + F j2 ( x j ) θ j2 − αF 12 ( x 1 ) θ12 + d j2 (t) − αd 12 (t) + u j−1 , 2 

. 

. 

. 

˙ e j−1 ,n = f jn ( x j ) − α f 1 n ( x 1 ) + F jn ( x j ) θ jn − αF 1 n ( x 1 ) θ1 n + d jn (t) − αd 1 n (t) + u j−1 ,n 

(2.3) 

Remark 1. From (2.3) , it is easy to know that the above synchro- 

nization mode is that N − 1 response systems will synchronize one 

drive system, which can be considered as the basic synchronization 

mode among multiple chaotic systems. 

Remark 2. Synchronization of chaotic systems is unavoidably sub- 

ject to external disturbances. In some actual systems, the upper 

bounds of disturbances are not only existing, but also the con- 

stants. From a theoretical point of view, we assume that the up- 

per bounds β1 i and β ji are given known constants, which fol- 

lows some published cases in [13,28,32,33] . In fact, such assump- 

tions are usual and suitable for chaos synchronization, which can 

facilitate our theoretical research in this paper. Meanwhile, it is 

pointed out that the upper bounds of most of disturbances are 

unknown constants in practical situations, and some discussions 

have been given to estimate the unknown upper bounds of distur- 

bances for two chaotic systems [15,16,23,24] . From a more practical 

point of view, investigation of disturbance’s effect in synchroniza- 

tion among multiple chaotic systems is our next goal by consider- 

ing the unknown upper bounds. 

Remark 3. The definition of the desired scaling factor α means 

that there exists projective synchronization among N chaotic sys- 

tems, then it is easy to know that complete synchronization 

[5,6] , anti-synchronization [6] and another proposed synchroniza- 

tion [10,12,13] can be considered as special cases in our model. 

For the above synchronization problem, sliding mode control 

method is used to design the appropriate controllers u j−1 to sta- 

ble the error system ˙ e j−1 and estimate the unknown parameters 

θ1 and θ j . First, we select a simple sliding surface as follows: 

s j−1 ,i (t) = λ j−1 ,i e j−1 ,i (t) (2.4) 

where s j−1 (t) = [ s j−1 , 1 , s j−1 , 2 , . . . , s j−1 ,n ] 
T and λ j−1 = 

diag( λ j−1 , 1 , λ j−1 , 2 , . . . , λ j−1 ,n ) , and λ j−1 ,i is a positive constant. 

Having proposed the suitable sliding surface, the next step is to 

design u j−1 ,i to ensure the existence of sliding motion, which can 

be given as 

u j−1 ,i = − f ji ( x ji ) + α f 1 i ( x 1 i ) − F ji ( x ji ) ̂  θ j 

+ αF ji ( x ji ) ̂  θ1 − k j−1 ,i sgn ( s j−1 ,i ) , (2.5) 
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